• Title/Summary/Keyword: gatCAB

Search Result 2, Processing Time 0.015 seconds

Cloning of the $Glu-tRNA^{Gln}$ Amidotransferase (gatCAB) Gene from Staphylococcus aureus

  • Namgoong, Suk;Hong, Kwang-Won;Lee, Se-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.251-258
    • /
    • 2001
  • In Gram(+) bacteria and organelles in higher eukarotes, $Gln-tRNA^{Gln}$ utilized for protein biosynthesis is formed by a tRNA-dependent amino acid transformation using mischarged $Gln-tRNA^{Gln}$ as the intermediate. In this study, the gatCAB gene encoding $Gln-tRNA^{Gln}$ amidotransferase (Glu-AdT) of Staphylococcus aureus was cloned and its nucleotide sequence wa determined. The S. aureus gatCAB gene was organized in an operon structure consisting of three open reading frames (gatC, gatA, and gatB), similar to that of Bacillus subtilis. The gene sequences for the A and B subunits of$Gln-tRNA^{Gln}$ amidotransferase showed significant homology (77 and 87% homology with amino acid sequence) with the gatA and gatB genes of B. subtilis, yet the C subunit (gatC) showed a relatively lowe homology with the B. subtilis gatC gene and other orthologues. The cloned S. aureus <$Gln-tRNA^{Gln}$ amidotransferase gene was highly expressed in Escherichia coli, and the resulting crude enzyme could convert misacylated <$Gln-tRNA^{Gln}$ into $Gln-tRNA^{Gln}$ in vitro.

  • PDF

Growth Inhibition of Escherichia coli during Heterologous Expression of Bacillus subtilis Glutamyl-tRNA Synthetase that Catalyzes the Formation of Mischarged Glutamyl-$tRNA_{l}$$^{Gln}$

  • Baick, Ji-Won;Yoon, Jang-Ho;Suk Namgoong;Dieter Soll;Kim, Sung-Il;Eom, Soo-Hyun;Hong, Kwang-Won
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.111-116
    • /
    • 2004
  • It is known that Bacillus subtilis glutamyl-tRNA synthetase (GluRS) mischarges E. coli $tRNA_{1}$$^{Gln}$ with glutamate in vitro. It has also been established that the expression of B. subtilis GluRS in Escherichia coli results in the death of the host cell. To ascertain whether E. coli growth inhibition caused by B. subtilis GluRS synthesis is a consequence of Glu-$tRNA_{1}$$^{Gln}$ formation, we constructed an in vivo test system, in which B. subtilis GluRS gene expression is controlled by IPTG. Such a system permits the investigation of factors affecting E. coli growth. Expression of E. coli glutaminyl-tRNA synthetase (GlnRS) also amelio-rated growth inhibition, presumably by competitively preventing $tRNA_{1}$$^{Gln}$ misacylation. However, when amounts of up to 10 mM L-glutamine, the cognate amino acid for acylation of $tRNA_{1}$$^{Gln}$, were added to the growth medium, cell growth was unaffected. Overexpression of the B. subtilis gatCAB gene encoding Glu-$tRNA^{Gln}$ amidotransferase (Glu-AdT) rescued cells from toxic effects caused by the formation of the mis-charging GluRS. This result indicates that B. subtilis Glu-AdT recognizes the mischarged E. coli Glu-$tRNA_{1}$$^{Gln}$, and converts it to the cognate Gln-$tRNA_{1}$$^{Gln}$ species. B. subtilis GluRS-dependent Glu-$tRNA_{1}$$^{Gln}$ formation may cause growth inhibition in the transformed E. coli strain, possibly due to abnormal protein synthesis.