• 제목/요약/키워드: gastric cells

검색결과 755건 처리시간 0.025초

인체 위암세포에서 고삼의 세포사멸효과 (Effects of Apoptosis of Sophorae Radix on Human Gastric Adenocarcinoma cells)

  • 임보라;이희정;김민철;김형우;김병주
    • 한국한의학연구원논문집
    • /
    • 제18권1호
    • /
    • pp.85-92
    • /
    • 2012
  • Objective : The purpose of this study was to investigate the anti-cancer effects of Sophorae Radix and the effects of 5-Fluorouracil (5-FU) in human gastric adenocarcinoma cells (AGS). Method : We used human gastric adenocarcinoma cell line, AGS cells. We examined cell death by MTT assay and caspase 3 assay with Sophorae Radix. To examine the inhibitory effects of Sophorae Radix, cell cycle (sub G1) analysis was done the AGS cells after three days with Sophorae Radix. The reversibility of Sophorae Radix was examined on one day to five days treatment with 100 ${\mu}g/ml$ Sophorae Radix. Result : Sophorae Radix inhibited the growth of AGS cells in a dose-dependent fashion. Also we showed that Sophorae Radix induced apoptosis in AGS cells by MTT assay, caspase 3 assay and sub-G1 analysis. Sophorae Radix combined with 5-FU markedly inhibited the growth of AGS cells compared to Sophorae Radix or 5-FU alone. After 3 days treatment of AGS cells with Sophorae Radix, the fraction of cells in sub-G1 phase was much higher than that of the control group. Conclusion : Our findings provide insight into unraveling the effects of Sophorae Radix in human gastric adenocarcinoma cells and developing therapeutic agents against gastric cancer.

Gastric Ulcer Healing Effects of Dioscorea japonica, Halloysite and Ostrea gigas Mixtures

  • Park, Jeong-Sook;Han, Kun
    • Natural Product Sciences
    • /
    • 제15권2호
    • /
    • pp.96-100
    • /
    • 2009
  • A novel gastric ulcer healing formulation, a mixture of Dioscoreae Rhizoma, Halloysitum Rubrum and Ostreae Testa (Dihaos), was examined for gastric ulcer healing effects. The effect of Dihaos was assessed in various gastric ulcer models in rats. Oral administration of Dihaos significantly reduced HCl-ethanol-induced gastric ulcers. Dihaos also significantly reduced gastric and duodenal ulcers induced by cysteamine. Ostreae Testa decreased secretion of gastric juice and increased the pH of gastric juice. Furthermore, the extracts of Dioscoreae Rhizoma affected the cell proliferation of MKN 74 cells. These results suggest that the healing effect of Dihaos on gastrohemorrhagic lesions results from its protective effect against acid secretion and proliferation of mucosal cells in induced gastric ulcers in rats.

Role of Integrin-Linked Kinase in Multi-drug Resistance of Human Gastric Carcinoma SGC7901/DDP Cells

  • Song, Wei;Jiang, Rui;Zhao, Chun-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5619-5625
    • /
    • 2012
  • Gastric carcinoma is a leading cause of cancer death in the world and multi-drug resistance (MDR) is an essential aspect of gastric carcinoma chemotherapy failure. Recent studies have shown that integrin-linked kinase (ILK) is involved in metastasis of human tumors, expression silencing of ILK inhibiting the metastasis of several types of cultured human cancer cells. However, the role and potential mechanism of ILK to reverse the multi-drug resistance in human gastric carcinoma is not fully clear. In this report, we focused on roles of expression silencing of ILK in multi-drug resistance reversal of human gastric carcinoma SGC7901/DDP cells, including increased drug sensitivity to cisplatin, cell apoptosis rates, and intracellular accumulation of Rhodamine-123, and decreased mRNA and protein expression of multi-drug resistance gene (MDR1), multi-drug resistance-associated protein (MRP1), excision repair cross-complementing gene 1 (ERCC1), glutathione S-transferase -${\pi}$ (GST-${\pi}$) and RhoE, and transcriptional activation of AP-1 and NF-${\kappa}B$ in ILK silenced SGC7901/DDP cells. We also found that there was a decreased level of p-Akt and p-ERK. The results indicated that ILK might be used as a potential therapeutic strategy to combat multi-drug resistance through blocking PI3K-Akt and MAPK-ERK pathways in human gastric carcinoma.

Effect of MUC1 siRNA on Drug Resistance of Gastric Cancer Cells to Trastuzumab

  • Deng, Min;Jing, Da-Dao;Meng, Xiang-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.127-131
    • /
    • 2013
  • Trastuzumab is the first molecular targeting drug to increase the overall survival rate in advanced gastric cancer. However, it has also been found that a high intrinsic or primary trastuzumab resistance exists in some proportion of gastric cancer patients. In order to explore the mechanism of resistance to trastuzumab, firstly we investigated the expression of MUC1 (membrane-type mucin 1) in gastric cancer cells and its relationship with drug-resistance. Then using gene-silencing, we transfected a siRNA of MUC1 into drug-resistant cells. The results showed the MKN45 gastric cell line to be resistant to trastuzumab, mRNA and protein expression of MUC1 being significantly upregulated. After transfection of MUC1 siRNA, protein expression of MUC1 in MKN45cells was significantly reduced. Compared with the junk transfection and blank control groups, the sensitivity to trastuzumab under MUC1 siRNA conditions was significantly increased. These results imply that HER2-positive gastric cancer cell MKN45 is resistant to trastuzumab and this resistance can be cancelled by silencing expression of the MUC1 gene.

MicroRNA-146a Enhances Helicobacter pylori Induced Cell Apoptosis in Human Gastric Cancer Epithelial Cells

  • Wu, Kai;Yang, Liu;Li, Cong;Zhu, Chao-Hui;Wang, Xin;Yao, Yi;Jia, Yu-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권14호
    • /
    • pp.5583-5586
    • /
    • 2014
  • Helicobacter pylori (H. pylori) infection induces apoptosis in gastric epithelial cells, and this occurrence may link to gastric carcinogenesis. However, the regulatory mechanism of H. pylori-induced apoptosis is not clear. MicroRNA-146a has been implicated as a key regulator of the immune system. This report describes our discovery of molecular mechanisms of microRNA-146a regulation of apoptosis in human gastric cancer cells. We found that overexpression of microRNA-146a by transfecting microRNA-146a mimics could significantly enhance apoptosis, and this upregulation was triggered by COX-2 inhibition. Furthermore, we found that microRNA-146a density was positively correlated with apoptosis rates in H. pylori-positive gastric cancer tissues and intratumoral microRNA-146a density was negatively correlated with lymph node metastasis among H. pylori-positive gastric cancer patients. Understanding the important roles of microRNA-146a in regulating cell apoptosis in H. pylori infected human gastric cancer cells will contribute to the development of microRNA targeted therapy in the future.

식방풍 유래 화합물 3′,4′-Disenecioylkhellactone의 위암세포에서 STAT3 활성화 억제를 매개로 하는 세포사멸 유도작용 (3′,4′-Disenecioylkhellactone from Peucedanum japonicum Thunb. Induces Apoptosis Mediated by Inhibiting STAT3 Signaling in Human Gastric Cancer Cells)

  • 천재무;김진웅;김영식
    • 생약학회지
    • /
    • 제49권3호
    • /
    • pp.225-230
    • /
    • 2018
  • 3',4'-Disenecioylkhellactone is one of khellactone-type coumarins isolated from the roots of Peucedanum japonicum Thunb. However, its pharmacological effects are still little understood. In the present study, we investigated the inhibitory effect of 3',4'-disenecioylkhellactone on growth of gastric cancer cells. 3',4'-Disenecioylkhellactone strongly suppressed cell proliferation and induced caspase-mediated apoptosis in AGS human gastric cancer cells. Analysis of phospho-antibody arrays revealed 3',4'-disenecioylkhellactone effectively suppressed signal transducer and activator of transcription 3 (STAT3) tyrosine phosphorylation. 3',4'-Disenecioylkhellactone decreased STAT3 translocation to the nucleus and expression of STAT3 target genes. In addition, we examined the level of STAT3 activation in several gastric cancer cells and found that the inhibition of STAT3 phosphorylation by 3',4'-disenecioylkhellactone was associated with gastric cancer cell proliferation. Taken together, this study provides evidence for the first time that 3',4'-disenecioylkhellactone may be a potential therapeutic agent for the prevention or treatment of gastric cancer.

LINC01232 Promotes Gastric Cancer Proliferation through Interacting with EZH2 to Inhibit the Transcription of KLF2

  • Liu, Jing;Li, Zhen;Yu, Guohua;Wang, Ting;Qu, Guimei;Wang, Yunhui
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1358-1365
    • /
    • 2021
  • To clarify the role of long intergenic nonprotein-coding RNA 1232 (LINC01232) in the progression of gastric cancer and the potential mechanism, we analyzed the expression of LINC01232 in TCGA database using the GEPIA online tool, and the LINC01232 level in gastric cancer cell lines was detected by quantitative real time-polymerase chain reaction (qRT-PCR) as well. Cell proliferation assay, colony formation assay, transwell assay and tumor formation experiment in nude mice were conducted to observe the biological behavior changes of gastric cancer cells through the influence of LINC01232 knockdown. LncATLAS database and subcellular isolation assay were used for subcellular distribution of LINC01232 in gastric cancer cells. The interaction among LINC01232, zeste homolog 2 (EZH2) and kruppel-like factor 2 (KLF2) was clarified by RNA-protein interaction prediction (RPISeq), RNA immunoprecipitation (RIP), qRT-PCR and chromatin immunoprecipitation (ChIP) assay. Rescue experiments were further conducted to elucidate the biological function of LINC01232/KLF2 axis in the progression of gastric cancer. LINC01232 was upregulated in stomach adenocarcinoma (STAD) tissues and gastric cancer lines. LINC01232 knockdown inhibited the proliferative capacities of gastric cancer cells in vitro, and impaired in vivo tumorigenicity. LINC01232 was mainly distributed in the cell nucleus where it epigenetically repressed KLF2 expression via binding to the enhancer of EZH2, which was capable of binding to promoter regions of KLF2 to induce histone H3 lysine 27 trimethylation (H3K27me3). LINC01232 exerts oncogenic activities in gastric cancer via inhibition of KLF2, and therefore, the knockdown of KLF2 could reverse the regulatory effect of LINC01232 in the proliferative ability of gastric cancer cells.

Analysis of Somatostatin-Secreting Gastric Delta Cells according to Upper Abdominal Symptoms and Helicobacter pylori Infection in Children

  • Kim, Dong-Uk;Moon, Jin-Hwa;Lee, Young-Ho;Paik, Seung Sam;Kim, Yeseul;Kim, Yong Joo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제23권3호
    • /
    • pp.243-250
    • /
    • 2020
  • Purpose: Gastric delta cells (D-cells), which are somatostatin-secreting cells, are the main paracrine inhibitor of acid secretion. The number of D-cells was studied in children presenting with upper gastrointestinal (UGI) disease. Methods: We retrospectively investigated the number of D-cells in the gastric body and antrum through immunofluorescence examinations according to symptoms, endoscopic findings, and Helicobacter pylori infection in 75 children who visited Hanyang University Hospital Pediatrics. Results: The mean patient age was 12.2±3.3 years. The male-to-female ratio was 1:1.4. The mean D-cell number per high-power field in the antrum and body was 20.5 and 12 in children with substernal pain, 18.3 and 10.3 in vomiting, 22.3 and 6 in diarrhea, and 9.3 and 6 in abdominal pain, respectively (p>0.05). According to endoscopic findings, the mean D-cell number in the antrum and body was 14.3 and 6 with gastritis, 14 and 9.3 with reflux esophagitis, 16.7 and 8.7 with duodeno-gastric reflux, 19.3 and 12.7 with gastric ulcer, 16 and 13.7 with duodenitis, and 12.3 and 4 with duodenal ulcer, respectively (p>0.05). The D-cell number in the gastric body was 2.7 and 8.7 in children with current H. pylori infection and non-infected children, respectively (p=0.01), while those in the antrum were 15.5 and 14, respectively, with no statistical significance. Conclusion: The D-cell number was lower in the gastric body of children with current H. pylori infection. Further studies concerning peptide-secreting cells with a control group would provide information about the pathogenic pathways of UGI disorder.

Chestnut extract induces apoptosis in AGS human gastric cancer cells

  • Lee, Hyun-Sook;Kim, Eun-Ji;Kim, Sun-Hyo
    • Nutrition Research and Practice
    • /
    • 제5권3호
    • /
    • pp.185-191
    • /
    • 2011
  • In Korea, chestnut production is increasing each year, but consumption is far below production. We investigated the effect of chestnut extracts on antioxidant activity and anticancer effects. Ethanol extracts of raw chestnut (RCE) or chestnut powder (CPE) had dose-dependent superoxide scavenging activity. Viable numbers of MDA-MD-231 human breast cancer cells, DU145 human prostate cancer cells, and AGS human gastric cancer cells decreased by 18, 31, and 69%, respectively, following treatment with $200{\mu}g/mL$ CPE for 24 hr. CPE at various concentrations ($0-200{\mu}g/mL$) markedly decreased AGS cell viability and increased apoptotic cell death dose and time dependently. CPE increased the levels of cleaved caspase-8, -7, -3, and poly (ADP-ribose) polymerase in a dose-dependent manner but not cleaved caspase-9. CPR exerted no effects on Bcl-2 and Bax levels. The level of X-linked inhibitor of apoptosis protein decreased within a narrow range following CPE treatment. The levels of Trail, DR4, and Fas-L increased dose-dependently in CPE-treated AGS cells. These results show that CPE decreases growth and induces apoptosis in AGS gastric cancer cells and that activation of the death receptor pathway contributes to CPE-induced apoptosis in AGS cells. In conclusion, CPE had more of an effect on gastric cancer cells than breast or prostate cancer cells, suggesting that chestnuts would have a positive effect against gastric cancer.

18α-Glycyrrhetinic acid의 위암 세포 사멸 효과에 관한 연구 (18α-Glycyrrhetinic acid induces apoptosis of AGS human gastric cancer cells)

  • 김정남;김병주
    • 대한한의학방제학회지
    • /
    • 제28권1호
    • /
    • pp.63-70
    • /
    • 2020
  • Objectives : The purpose of this study was to investigate the anti-cancer effects of 18α-Glycyrrhetinic acid (18α-GA), a hydrolyzed metabolite of glycyrrhizin, in AGS human gastric adenocarcinoma cells. Methods : We used human gastric adenocarcinoma cell line, AGS cells. We examined cell death by MTT assay and caspase 3 and 9 assay with 18α-GA. To examine the inhibitory effects of 18α-GA, sub-G1 analysis was done the AGS cells after 24 hours with 18α-GA. Also, to investigate the inhibitory mechanisms of 18α-GA, mitogen-activated protein kinase pathways and reactive oxygen species (ROS) generation were examined. Results : 1. 18α-GA inhibited the growth of AGS cells in a dose-dependent fashion. 2. Sub-G1 fractions were significantly and dose-dependently increased by 18α-GA. 3. 18α-GA increased the caspase 3 and 9 activities in AGS cells. 4. 18α-GA inhibited proliferation of AGS cells via the modulation of c‑Jun N‑terminal kinase (JNK) signaling pathways, which results in the induction of apoptosis. 5. 18α-GA enhanced ROS accumulation in AGS cells. Conclusions : Our findings provide insight into unraveling the effects of 18α-GA in human gastric adenocarcinoma cells and developing therapeutic agents against gastric cancer.