• 제목/요약/키워드: gasoline additives

검색결과 17건 처리시간 0.025초

대체연료로서 가솔린-메타놀 혼합연료에 의한 가솔린 기관성능과 배출오염물에 관한 연구 (A study on engine performances and exhaust emissions using gasoline-methanol as an alternative fuel)

  • 김희철;용기중
    • 오토저널
    • /
    • 제3권2호
    • /
    • pp.18-26
    • /
    • 1981
  • The purpose of this paper is to study the possibility of practical use of gasoline-methanol mixed fuel as an alternative fuel of gasoline engines in the light of engine performances and harmful exhaust emissions as well as mixings and separations of the mixed fuels. When the methanol of 99.8% purity is mixed with super or regular gasoline available on the market today, the experimental results obtained without modifying carburetor in this study are as follows; 1.The separation ratio depends upon the gasoline-methanol mixing ratio only, regardless of fuel temperature and fuel additives for preventing separation of phase. 2.The critical absorption ratio is affected by the gasoline-methanol mixing ratio, its temperature and the quantity of fuel additives. 3.Concerning the distillation temperature, the initial point of all sorts of fuels is almost same,but 10% point and 35-60% point of mixed fuels are lower than those of gasoline only. 4.In case of throttle valve opening set, engine output using the mixed fuels is decreased compared to gasoline, but thermal efficiency is increased as a consequence of decreasing specific energy consumption. 5.In case of fixed load test, thermal efficiency is increased at low engine speed even under low part-load as well as under comparatively high part-load including full load. 6.CO and NOx emissions are reduced remarkably with the mixed fuels.

  • PDF

청정분산제의 적외선 분광스펙트럼 비교를 통한 자동차용 휘발유 제조사의 판별 (Determination of Gasoline Brands by the Comparison of Infrared Spectra of Polymeric Dispersants)

  • 김명희;장영식;정충섭;이현기
    • 분석과학
    • /
    • 제11권6호
    • /
    • pp.469-473
    • /
    • 1998
  • 자동차용 휘발유 제조사의 확인 또는 판별은 석유류의 정상적인 유통관리 및 오염사고시 오염원의 추적을 위해 필요하다. 일반적으로 휘발유의 화학적 조성은 가스크로마토그래피(GC)로 분석이 가능하며, 제품별로 얻어진 크로마토그램의 차이로부터 각 제품을 구분할 수 있으나 제조기준의 세분화로 휘발유의 조성이 유사해져 GC분석에 의한 판별이 더욱 어렵게 되었다. 본 연구에서는 보다 신속하고 정확하게 휘발유 제품을 판별하기 위하여, 분산제의 적외선 분광스펙트라를 비교하여 제조사(A, B, C, D, E사로 구분)를 구분하는 방법을 도식화하였다. IR spectra는 휘발유를 검시험기(gum tester)로 증발시키고, 잔여물을 n-pentane으로 녹여 ATR(Attenuated Total Reflectance) cell로 옮기고 다시 용매를 증발시킨 후에 얻었다. 'A', 'B', 및 'C'정유사에서 사용하는 첨가제들은 에테르(ether)의 C-O 신축진동에 의한 넓고 강한 피크가 $1,096cm^{-1}$에서 나타나 'D'와 'E'정유사의 첨가제들과 뚜렷하게 구별이 가능하였고, 또 다른 특징적인 피크들로써 각 정유사 제품의 구분이 모두 가능하였다.

  • PDF

연료첨가제 주입에 따른 승용차의 규제물질 배출특성 분석 (Characteristic Analysis of Regulated Pollutants Emitted from Passenger Cars according to Fuel Additives)

  • 정성운;손지환;홍희경;성기재;김정수;김정화
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.223-229
    • /
    • 2015
  • This paper was designed to investigate emission characteristics of regulated pollutants (CO, HC, NOx and PM) from 134 diesel and gasoline passenger cars based on emission standards according to fuel additives. The experiments using chassis dynamometer were conducted under NEDC and CVS-75 modes. Comparison for fuel additive management and test between Korea, USA, EU and Japan, Korea was more strict than others. The fuel additives of this study was satisfied within fuel manufacturing standards. For with/without fuel additives according to diesel emission standards, NOx of EURO 4 and EURO 5 showed a relatively similar tendency. In the case of PM reduction rate, EURO 5 was over 20% increased than EURO 4. In the case of standard deviation/average ratio for gasoline vehicles, variation interval was big for LEV 23.3~58% and ULEV 31.6~56.4%. Following the imposition of stricter regulations (EURO 5 and ULEV), difference rate for standard deviation was big. Especially, in the case of diesel vehicles, difference rate for NOx 68% and PM 48% was most big. The results of present study will be of assistance in completing the legislative process and will provide basic data to set up emission standards for fuel additives in Korea.

MTBE를 포함한 기타 가솔린 첨가제의 생 분해 적용 가능성 평가(I) : 호기성 조건 (An Assessment of the Feasibility of (I) : Condition of Aerobic)

  • 정우진;장순웅
    • 한국환경과학회지
    • /
    • 제25권6호
    • /
    • pp.757-766
    • /
    • 2016
  • MTBE and other gasoline additives contained in gasoline are known to be a refractory substance resistant to biodegradation. As a method of removing these substances, a research of method using native microbes of polluted soil was progressed and among these, bio-degradation possibility under aerobic condition was evaluated. All of the experiments were progressed based on batch experiment of lab scale and analyzed by GC-FID using HS-SPME technique. The result of bio-degradation experiment based on MTBE and other additives(ETBE, TAME) was observed below 1 mg/L, which initial concentration were 100 mg/L for each method. And through production of by-product and CO2, partial mineralization was confirmed. Degradation velocity of each additive was promptly represented in the order of TBA>ETBE>MTBE>TAME. Through this study, bio-degradation possibility of native microbes of oil polluted soil, MTBE and other gasoline additives was confirmed and it was considered that the result could be used for basic experiment data in removing oil pollutants of soil.

토착 미생물을 이용한 MTBE와 BTEX의 혐기성 생분해 연구 (A Study on Anaerobic Biodegradation of MTBE and BTEX by Indigenous Microorganisms)

  • 정우진;장순웅
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권3호
    • /
    • pp.88-94
    • /
    • 2016
  • The simultaneous biodegradation between MTBE (Gasoline additives) and BTEX (Benzene, Toluene, Ethyl-benzene, o-Xylene, m-Xylene, p-Xylene) was achieved within a competitive inter-relationship, with not only electron accepters such as nitrate, sulfate, and iron(III) without oxygen, but also with electron donors such as MTBE and BTEX. Preexisting indigenous microorganisms from a domestic sample of gasoline contaminated soil was used for a lab-scale batch test. The result of the test showed that the biodegradation rate of MTBE decreased when there was co-existing MTBE and BTEX, compared to having just MTBE present. The growth of indigenous microorganisms was not affected in the case of the MTBE treatment, whereas the growth of the microorganisms was decreased in combined MTBE and BTEX sample. This may indicate that an inhibitor related to biodegradation when BTEX and MTBE are mixed will be found. This inhibitor may be found to retard the anaerobic conditions needed for efficient breakdown of these complex carbon chain molecules in-situ. Moreover, it is also possible that an unknown competitive reaction is being imposed on the interactions between MTBE and BTEX dependent on conditions, ratios of mixture, etc.

가솔린의 첨가물질이 가소홀에 미치는 영향에 관한 연구 (The Effect of Additives on the Gasohol)

  • 이진휘;이일우
    • 한국응용과학기술학회지
    • /
    • 제28권3호
    • /
    • pp.374-378
    • /
    • 2011
  • The studied results of the gasohol, which is the mixture of gasoline and ethanol, were investigated for the promotion of applications on commercially by gasoline vehicle referring to octane number, minimum water contents be involved, and separation inhibitors for protecting phase separation etc. especially for the E10 and E20. The results showed that octane number will be revised by higher value as the ethanol is added more, and it's more effect in case of be added as a mixture than individually when inhibition agents is added for the inhibition of separation. and it's reasonable for the water contents of less than 1% by comparing with experimental results and in view of regulations of various countries.

파쇄 폐타이어를 이용한 반응벽체에 관한 연구: 폐타이어 내의 MTBE(Methyl tertiary Butyl Ether) 흡착 중심

  • 박상현;이재영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.176-179
    • /
    • 2003
  • Fuel oxygenates, such as Methyl tertiary Butyl Ether (MTBE) is additive in gasoline used to reduce air pollution. Gasoline components and fuel additives can leak form underground storage tanks. MTBE is far more water soluble than gasoline hydrocarbons like BTEX then it travels at essentially the same velocity as groundwater. MTBE in drinking water causes taste and odor problems. Therefore, the purpose of the this study is to examine the ability of ground rubber to sorb MTBE form water. The study consisted of running both batch and column tests to determine the sorption capacity and the flow through utilization efficiency of ground rubber. The result of Column test indicate that ground tire rubber has on the 36% utilization rate. Finally, it is clear that ground rubber present an attractive and relatively inexpensive sorption medium for a MTBE. The Author thought that to determine the economic costs of ground rubber utilization, the cost to sorb a given mass of contaminant by ground rubber will have to be compared to currently accepted sorption media.

  • PDF

자동차 연료 시스템에관한 연료 응고, 누설, 불량 휘발유 및 연료 첨가제에 의한 고장 사례 고찰 (Study of Failure Examples for Fuel Coagulation, Leakage, Low Grade Gasoline and Fuel Additives in Automotive Fuel System)

  • 이일권;김영규;고영배;김승철
    • Tribology and Lubricants
    • /
    • 제28권4호
    • /
    • pp.178-183
    • /
    • 2012
  • The fuel system of a vehicle is a very important compotent, as it provides the firing resources to the combustion chamber of the engine. However, improper operation of the system can generate bad condition or start-off during engine revolution. This study analyzed several examples of failure that had originated in the field. In the first example, the driver operated a vehicle containing both gasoline and LPG in the fuel tank, but the gasoline fuel remained unused for a few months. Therefore the fuel pump was clogged because of gasoline congelation. The second example, dealt with fuel leakage that occurred from the slightly torn O-ring connecting the fuel lines. The third example, pertained to engine damage and power-down owing to the usage of proor-quality fuel and ingredient. Therefore, it is necessary to take adequate measures to prevent the failure of the fuel system of vehicle.

가솔린 엔진오일의 사용에 따른 기계적 성질의 변화에 관한 연구 (The Changes of Mechanical Properties of Used Oil in Gasoline Engine)

  • 강석춘;신성철;김동길;노장섭
    • Tribology and Lubricants
    • /
    • 제9권2호
    • /
    • pp.36-48
    • /
    • 1993
  • This study is concerned with the changes (deterioration) of the mechanical properties of used oil in the gasoline engine. The analysed properties of used oil were friction, antiwear, wear debris, load-carrying ability and the formation of surface film. From this study, it was found that the oil used in engine was deteriorated to increase the wear and fricion and decrease the load-carrying ability as the running distance of oil was increased. Also the main cause of deterioration was related to the formation of the protective film on the contact zone. When the film was composed with rich additives (sulfur), this could properly protect contact zone from the increase of wear and friction. But as oil was deteriorated, it could not form such a film and therefore the protective ability of sliding surface diminished.

Gasoline-ethanol(Gasohol)혼합액의 점토층 내 이동에 대한 연구 (Enhanced Migration of Gasohol Fuels in Clay Soils and Sediments)

  • Hee-Chul Choi;W.M. Stallard;Kwang-Soo Kim;In-Soo Kim
    • 한국토양환경학회지
    • /
    • 제1권1호
    • /
    • pp.67-79
    • /
    • 1996
  • 점토는 물과 같이 극성이 큰 유체가 존재할 때 매우 낯은 투수계수를 갖게된다. 따라서 극성이 매우 낮은 탄화수소계연료나 할로겐화 유기용제등은 간극수(pore water)를 밀어내지 못하기 때문에 점토공극내로 이동할 수 없다. 최근들어 대기오염 저감대책의 하나로 알콜이나 MTBE(methyl-tert-butyl ether)등과 같은 가솔린 산소첨가제의 사용량이 늘어나고 있는 추세에 있다. 이들 산소첨가제는 극성을 띠고 있으며 물에 대한 용해도가 매우 높기 때문에 간극수를 교체하여 가솔린이나 유기용제등의 점토층내 이동을 촉진시킬 가능성을 갖고 있다. 본 연구에서는 가솔린-알콜 혼합연료(gasohol)의 압밀점토층 내에서의 이동을 실험적으로 살펴보았다. 카올린슬러리를 압밀시켜 제조한 점토층에 가솔린, 알콜, 그리고 물의 혼합액을 152 Pa하에서 접촉시켰다. 점토층내로의 유체이동은 교체된 간극유체유량을 측정함으로써, 그리고 현상학적인 관찰은 핵자기 공명상(magnetic resonance image; MRI)을 측정해봄으로 추적하였다. 또한 점토시료의 구조는 environmental scanning electron microscopy (ESEM)를 이용하여 분석하였다. 연구결과를 볼 때 가솔린만 존재시 접촉 14일 이후에도 물로 포화된 점토층내로 가솔린이 이동하지 못한 반면 gasohol 혼합체는 접촉후 단 20분이내에 점토층을 완전 통과하여 탄화수소계연료에 첨가된 알콜이 점토층내로의 이동을 한층 강화하는 것으로 나타났다. Gasohol과 접촉시 이러한 점토의 투수계수 증가는 알콜로 인해 점토의 공극구조가 붕괴되어 더 큰 공극을 형성시켰기 때문인 것으로 판단되었다. 또한 공극직경(pore diameter)이 증가함으로 gasohol이 간극수를 교체하는데 필요한 모세압력이 감소되어 gasohol이 쉽게 점토증을 이동하게 되는 것이다.

  • PDF