• Title/Summary/Keyword: gasoline additive

Search Result 31, Processing Time 0.015 seconds

Cometabolic Biodegradation of Fuel Additive Methyl tert-Butyl Ether(MTBE) by Propane- and Butane-Oxidizing Microorganisms (프로판 및 부탄 이용 미생물에 의한 휘발유 첨가제 MTBE의 동시분해)

  • 장순웅
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.45-52
    • /
    • 2003
  • A gas-substrate degrading bacterium, Nocardia SW3, was isolated from the gasoline contaminated aquifer using propane and butane as carbon and energy sources. We have examined the effects of substrate concentration, temperature and pH on the gas substrate degradation as well as MTBE cometabolic degradation. The result for the effect of substrate concentration showed that the maximum degradation rates of propane and butane were 30.6 and 25.4 (n㏖/min/mg protein) at 70 $\mu$㏖, respectively. The optimum temperature and pH for the degradation of gas substrate were $30^{\circ}C$ and 7, respectively. Substrate degradation activity, however, was still active in broad range of pH from 5 to 8 and temperature between $15^{\circ}C$and$35^{\circ}C$. The degradation activity of Nocardia SW3 for the MTBE was similar to the both substrates. The observed maximal transformation yields ($T_y$) were 46.7 and 35.0 (n㏖ MTBE degraded $\mu$㏖ substrate utilized), and the maximal transformation capacities ($T_c$) were 320 and 280 (n㏖MTBE degraded/mg biomass used) for propane and butane oxidizing activity on MTBE, respectively. And also, TBA was detected as by-product of MTBE and it was continuously degraded further.