• 제목/요약/키워드: gas-phase sequencing

검색결과 4건 처리시간 0.018초

연속 회분식 고온 혐기성 공정의 운전특성 연구 (Operational Characteristics of the Anaerobic Sequencing Batch Reactor Process at a Thermophilic Temperature)

  • 이종훈;정태학;장덕
    • 상하수도학회지
    • /
    • 제11권1호
    • /
    • pp.33-41
    • /
    • 1997
  • An attempt was made to enhance anaerobic treatment efficiency by adopting the anaerobic sequencing batch reactor(ASBR) process at a thermophilic temperature. Operational characteristics of the ASBR process were studied using laboratory scale reactors and concentrated organic wastewater composed of soluble starch and essential nutrients. Effects of fill to react ratio (F/R) were examined in the Phase I experiment, where the equivalent hydraulic retention time(HRT) was maintained at 5 days with the influent COD of 10g/L. A continuous stirred tank reactor(CSTR) was operated in parallel as a reference. Treatment efficiency was higher for the ASBRs because of continuous accumulation of volatile suspended solids(VSS) compared to the CSTR. However, the rate of gas production and organic removal per unit VSS in the ASBRs was much lower than the CSTR. This was caused by reduced methane fermentation due to accumulation of volatile acids(VA), especially for the case of low F/R, during the fill period. When the F/R was high, maximum VA was low and the VA decreased in short period. Consequently, more stable operation was possible with higher F/R. Effects of hydraulic loading rate on the efficiency was studied in the Phase II experiment, where the organic loading rate was elevated to 3333mg/L-d with the F/R of 0.12. Reduction of organic removal along with rapid increase of VA was observed and the stability of reaction was seriously impaired, when the influent COD was doubled. However, operation of the ASBR was quite stable, when the hydraulic loading rate was doubled and a cycle time was adjusted to 12 hour. It is essential to avoid rapid accumulation of VA during the fill period in order to maintain operational stability of the ASBR.

  • PDF

Density Functional Theory (DFT) Study of Gas-phase O.C Bond Dissociation Energy of Models for o-TEMPO-Bz-C(O)-Peptide: A Model Study for Free Radical Initiated Peptide Sequencing

  • Kwon, Gyemin;Kwon, Hyuksu;Lee, Jihye;Han, Sang Yun;Moon, Bongjin;Oh, Han Bin;Sung, Bong June
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.770-774
    • /
    • 2014
  • The bond dissociation energy (BDE) of the chemical bond between the carbon and oxygen atoms of a simple TEMPO-derivative is calculated by employing the density functional theory, the $2^{nd}$ order M${\phi}$ller-Plesset (MP2) perturbation theory, and complete basis set (CBS) methods. We find that BDE of the positive ion of the TEMPO-derivative is larger at least by 7 kcal/mol than that of the negative ion, which implies that the dissociation reaction rate of the positive ion should be slower than that of the negative ion. Such theoretical predictions are contrary to the results of our previous experiments (Anal. Chem. 2013, 85, 7044), in which the larger energy was required for negative o-TEMPO-Bz-C(O)-peptides to undergo the dissociation reactions than for the positive ones. By comparing our theoretical results to those of the experiments, we conclude that the dissociation reaction of o-TEMPO-Bz-C(O)-peptide should occur in a complicated fashion with a charge, either positive or negative, probably being located on the amino acid residues of the peptide.

프로테옴 해석에 의한 벼 게놈 기능해석과 응용 (Rice Proteomics: A Functional Analysis of the Rice Genome and Applications)

  • 우선희;김홍식;송범헌;이철원;박영목;정승근;조용구
    • Journal of Plant Biotechnology
    • /
    • 제30권3호
    • /
    • pp.281-291
    • /
    • 2003
  • In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is the most prevalent technique to rapidly identify a large number of proteome analysis. However, the conventional Western blotting/sequencing technique has been used in many laboratories. As a first step to efficiently construct protein cata-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein sports are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins(i, e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 45% of total rice cDNA have been deposited in the EMBL database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that tuned out to be calreticulin, gibberellin-binding protein, which is ribulose-1.5-bisphosphate carboxylase/oxygense active in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins(http://genome.c.kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Also, the information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful be in the plant molecular breeding.

Potentiality of Beneficial Microbe Bacillus siamensis GP-P8 for the Suppression of Anthracnose Pathogens and Pepper Plant Growth Promotion

  • Ji Min Woo;Hyun Seung Kim;In Kyu Lee;Eun Jeong Byeon;Won Jun Chang;Youn Su Lee
    • The Plant Pathology Journal
    • /
    • 제40권4호
    • /
    • pp.346-357
    • /
    • 2024
  • This study was carried out to screen the antifungal activity against Colletotrichum acutatum, Colletotrichum dematium, and Colletotrichum coccodes. Bacterial isolate GP-P8 from pepper soil was found to be effective against the tested pathogens with an average inhibition rate of 70.7% in in vitro dual culture assays. 16S rRNA gene sequencing analysis result showed that the effective bacterial isolate as Bacillus siamensis. Biochemical characterization of GP-P8 was also performed. According to the results, protease and cellulose, siderophore production, phosphate solubilization, starch hydrolysis, and indole-3-acetic acid production were shown by the GP-P8. Using specific primers, genes involved in the production of antibiotics, such as iturin, fengycin, difficidin, bacilysin, bacillibactin, surfactin, macrolactin, and bacillaene were also detected in B. siamensis GP-P8. Identification and analysis of volatile organic compounds through solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) revealed that acetoin and 2,3-butanediol were produced by isolate GP-P8. In vivo tests showed that GP-P8 significantly reduced the anthracnose disease caused by C. acutatum, and enhanced the growth of pepper plant. Reverse transcription polymerase chain reaction analysis of pepper fruits revealed that GP-P8 treated pepper plants showed increased expression of immune genes such as CaPR1, CaPR4, CaNPR1, CaMAPK4, CaJA2, and CaERF53. These results strongly suggest that GP-P8 could be a promising biocontrol agent against pepper anthracnose disease and possibly a pepper plant growth-promoting agent.