• Title/Summary/Keyword: gas volume

Search Result 1,565, Processing Time 0.034 seconds

A Study on V-I feature of Hydrogen-Oxygen Gas Generator (수산화가스 발생기의 V-I 특성에 관한 연구)

  • Yang S.H.;Kim K.H.;Kang B.H.;Mok H.S.;Choe G.H.;Lee S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.312-315
    • /
    • 2001
  • Water-Electrolyzed gas is a mixed gas of the constant volume ratio 2:1 Hydrogen and Oxygen gained from electrolyzed water, and it has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for existing gas welding equipment. So studies of Water-Electrolyzed gas are activity in progress nowadays, and commercially used as a source of thermal energy for gas welding in the industry. The object of this paper is V-I feature of Hydrogen -Oxygen Gas Generator using DC source

  • PDF

Effect of Packaging Conditions on the Fruit Quality of Chinese Quince

  • An, Duck-Soon;Lee, Dong-Sun
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.683-687
    • /
    • 2006
  • The respiration rate of Chinese quince was measured at 0, 5, 10, and $20^{\circ}C$ to determine its tolerable range of storage temperatures. Based on the measured respiration rates, plastic films covering a wide range of gas permeabilities were used for packaging and storing individual Chinese quince at 0 and $10^{\circ}C$. Chinese quince can be categorized as low respiration fruit. Higher respiratory quotients were observed at higher temperature suggesting that the tolerable temperature range for storage is $0-10^{\circ}C$. Packages containing Chinese quince wrapped in highly gas-permeable polyolefin film PD 941 attained, with progressive decreases in volume, 9.5-10.2% $O_2$ and 1.3-1.8% $CO_2$ at $0^{\circ}C$, 8.1% $O_2$ and 2.4% $CO_2$ at $10^{\circ}C$. At these levels, PD 941 could preserve the fruit at acceptable quality levels for 152 and 50 days at 0 and $10^{\circ}C$, respectively. Less gas-permeable packages built up high $CO_2$ concentrations (above 15.8%) and low $O_2$ concentrations (less than 1.8%) causing free volume expansion and eventual dark discoloration of the fruit. The storage life realized by packaging with polyolefin film PD 941 could facilitate the availability of Chinese quinces in winter and spring for medicinal or ornamental purposes in the fresh state.

Repetitive operation characteristics of 500 Hz class excimer laser (500 Hz급 엑시머레이저의 반복동작특성)

  • 박홍진;이주희
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.232-237
    • /
    • 1996
  • A 500 Hz repetition rate excimer laser was developed as light source for pollution lidar. In this paper, the high repetitive output characteristics, the gas flow loop structure, and CR(clearing ratio) characteristics were investigated. Our laser system was constructed compact structure with a streamline gas flow loop and UV preionization. The real gas volume of laser is 10 liter. At 500 Hz repetitive operation, we have obtained average power of 53 watt with KrF laser gas. The variation of laser output, CR, and active volume are $\pm$6.7%, 2.3, and 2.0(H)$\times$1.2(W)$\times$56(L)=134 ㎤, respectively. Laser output power is declined to half at 3$\times$$10^6$ shots.

  • PDF

Evaluation of the SWR′s Early Pressure Variations in the KALIMER IHTS (KALIMER IHTS의 SWR 초기 압력파 거동 분석)

  • 김연식;심윤섭;김의광;어재혁
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.122-129
    • /
    • 2002
  • The analytical models and algorithm of the SPIKE code, which has been developed by KAERI's KALIMER team to investigate the sodium-water reaction phenomena in the liquid metal reactor, were introduced with its verification calculation results. The sodium water reaction of KALIMER IHTS was evaluated. Early stage of the sodium-water reaction consists of wave and mass transfer regimes. The pressure variations were independent of specific design features in the wave transfer regime. However in the mass transfer regime, the pressure variations were strongly dependent on cover gas volume and rupture disk set pressure. The early stage SWR analysis showed that the KALIMER IHTS with an appropriate cover gas volume and rupture disk set pressure had enough margin to its design pressure.

The Vertical Disk Structure and Star Formation in Nearby Edge-On Galaxies

  • Yim, Kijeong;Wong, Tony;Rand, Richard;Rosolowsky, Erik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.31.3-32
    • /
    • 2016
  • We present the radial variations of the scale heights and the vertical velocity dispersions in a sample of nearby edge-on galaxies using BIMA/CARMA $^{12}CO$ ($J=1{\rightarrow}0$), VLA/EVLA HI, and Spitzer $3.6{\mu}m$ data. Both the disk thicknesses and the velocity dispersions of gas and stars vary with radius, contrary to assumptions of previous studies. We investigate how the interstellar gas pressure and the gravitational instability parameter differ from values derived assuming constant velocity dispersions and scale heights. Using the measurement of the disk thicknesses and the derived radial profiles of gas and stars, we estimate the corresponding volume densities. The gravitational instability parameter Q follows a fairly uniform profile with radius and is ${\geq}1$ across the star-forming disk. The star formation law has a slope that is significantly different from those found in more face-on galaxy studies. The midplane gas pressure appears to roughly hold a power-law correlation with the midplane volume density ratio (${\rho}_{H2}/{\rho}_{HI}$).

  • PDF

Simulation of the Gas Exchange Process in a Two - Stroke Cycle Diesel Engine (2행정 사이클 디젤기관의 가스교환과정 시뮬레이션)

  • 고대권;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.104-112
    • /
    • 1994
  • The scavenging efficiency has a great influence on the performance of a diesel engine, especially slow two-stroke diesel engines which are usually used as a marine propulsion power plant. And this is greatly affected by the conditions in the cylinder, scavenging manifold and exhaust manifold during the gas exchange process. There are many factors to affect on the scavenging efficiency and these factors interact each other very complicatedly. Therefore the simulation program of the gas exchange process is very useful to improve and predict the scavenging efficiency, due to the high costs associated with redesign and testing. In this paper, a three-zone scavenging model for two-stroke uniflow engines was developed to link a control-volume-type engine simulation program for performance prediction of long-stroke marine engines. In this model it was attempted to simulate the three different regions perceived to exist inside the cylinder during scavenging, namely the air, mixing and combystion products regions, by modeling each region as a seperate control volume. Finally the scavenging efficiency was compared with three type of scavenging modes, that is, pure displacement, partial mixing and prefect mixing.

  • PDF

MICOWAVE PLASMA BURNER

  • Hong, Yong-Cheol;Shin, Dong-Hun;Lee, Sang-Ju;Jeon, Hyung-Won;Lho, Taihyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.95-95
    • /
    • 2010
  • An apparatus for generating flames and more particularly the microwave plasma burner for generating high-temperature large-volume plasma flame was presented. The plasma burner was composed of micvrowave transmission lines, a field applicator, discharge tube, coal and gas supply systems, and a reactor. The plasma burner is operated by injecting coal powders into a 2.45 GHz microwave plasma torch and by mixing the resultant gaseous hydrogen and carbon compounds with plasma-forming gas. We in this work used air, oxygen, steam, and their mixtures as a discharge gas or oxidant gas. The microwave plasma torch can instantaneously vaporize and decompose the hydrogen and carbon containing fuels. It was observed that the flame volume of the burner was more than 50 times that of the torch plasma. The preliminary experiments were carried out by measuring the temperature profiles of flames along the radial and axial directions. We also investigated the characteristics for coal combustion and gasification by analyzing the byproducts from the exit of reactor. As expected, various byproducts such as hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. were detected. It is expected that such burner cab be applied to coal gasification, hydrocarbon reforming, industrial boiler of power plants, etc.

  • PDF

Determination of Free Radicals in Mainstream Cigarette Smoke by Electron Spin Resonance (전자스핀공명에 의한 담배연기 중 자유라디칼 측정)

  • Lee, Jeong-Min;Lee, John-Tae;Park, Jin-Won;Hwang, Keun-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.146-151
    • /
    • 2007
  • Gas phase and particulate phase radicals in mainstream cigarette smoke were determined Electron Spin Resonance(ESR) spectroscopy. The free radicals in particulate phase have been investigated by benzene extract of Cambridge Filter Pad containing the smoke condensate. Spin trapping method in conjunction with ESR was used to investigate free radicals in the gas phase of cigarette smoke. Several analytical experiments were conducted in order to determine the optimal conditions for maximum signal intensities and reproducibility of results. All the tests were optimized and normalized using the University of Kentucky 2R4F reference cigarette. The optimal conditions were 0.6 mL for analysis volume of ESR, $4{\sim}5\;mL$ for collection volume of spin-adducts, and PBN for quantification of free radicals in gas phase. The radical levels of Kentucky 2R4F cigarettes were found $2.18{\times}10^{14}\;spins/cig.$ and $2.10{\times}10^{15}\;spins/cig.$ in gas phase.

RADICAL IGNITION TECHNIQUE IN A CONSTANT VOLUME CHAMBER

  • Park, J.S.;Ha, J.Y.;Yeom, J.K.;Lee, J.S.;Lee, C.J.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.269-274
    • /
    • 2007
  • A prior fundamental study was executed using a constant volume chamber (CVC) to improve the burning characteristics of lean pre-mixture by the injection of active radicals generated in the sub-chamber of the CVC. The Radical ignition (RI) technique shows remarkable progress in the burning velocity and combustible lean limit compared with the results of the spark ignition (SI) technique. The optimum design value of the sub-chamber geometry is near $0.11cm^{-1}$ for the ratio of the total area of the holes to the sub-chamber volume $(A_h/V_s)$. In this study, based on the former experimental results, the additional works have been performed to examine the effects of the geometry change in the number $(N_h)$, the total section area $(A_h)$, and diameter $(D_h)$ of the passage holes on the combustion characteristics in the CVC. Also ambient conditions such as the initial temperature and the initial pressure of the mixture were selected as experimental parameters and the effects of residual gas at the chamber on the combustion characteristics were investigated. As a result, the correlation between the passage hole number and overall passage hole area was grasped. The effects of the initial temperature were significant, but on the other hand, those of the initial pressure were weak. A more detailed analysis on the residual gas is required in the future.

Thermo-fluid Dynamic and Missile-motion Performance Analysis of Gas-Steam Launch System Utilizing Multiphase Flow Model and Dynamic Grid System (다상 유동모델과 동적 격자계를 활용한 가스-스팀 발사체계의 열유동과 탄의 운동성능 해석)

  • Kim, Hyun Muk;Bae, Seong Hun;Park, Cheol Hyeon;Jeon, Hyeok Soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.48-59
    • /
    • 2017
  • In this study, an analysis of the thermo-fluid dynamic and missile-motion performance was carried out through a numerical simulation inside the missile canister. Calculation was made in an analytical volume using dynamic grid and evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF (Volume Of Fluid) model were chosen and a parametric study was performed with the change of coolant flow rate. As a result of the analysis, pressure of the canister showed a large difference depending on the presence or absence of the coolant, and also showed a dependancy on the amount of coolant. Velocity and acceleration were dependent on the canister pressure.