• 제목/요약/키워드: gas transfer

검색결과 1,728건 처리시간 0.024초

복사가 수축 확대 노즐의 벽면에서 열전달과 벽마찰에 미치는 효과 (Effects of radiation on wall-friction and heat-transfer in a convergent- divergent nozzle)

  • 강신형;이준식;김성훈
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1639-1644
    • /
    • 1990
  • 본 연구에서는 경계층 해석 방법의 범위 내에서 복사열전달의 영향을 고려하 는데 있어서 매질의 광학적 두끼ㅔ가 얇다고 가정하여 매질 내부에서의 자체적인 복사 열의 후ㅂ수는 무시하고, 가스의 방사 에너지가 모두 벽으로 전된다고 가정하였으며 복사 전달량은 평균광로(mean beam length)를 고려한 가스방사율을 도입하여 복사전달 량을 계산하였다.

초저온 액화가스용 기화기의 열전달 수치해석 (Study on the Heat Transfer Numerical Analysis of Supper Low Temperature Liquefied Gas Vaporizer)

  • 이용훈;지명국;박기태;김필환;정효민;정한식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2211-2216
    • /
    • 2007
  • Liquefied gas vaporizer means machine to vaporize the liquefied gas as liquid nitrogen($LN_2$), liquefied natural gas(LNG), liquid oxygen($LO_2$) etc. In the air type vaporizer, the frozen dew is also created by temperature drop (below 273 K) on vaporizer surface. This problem increases as the time progresses and humidity increases. In addition, the frozen dew gradually becomes frost deposit consequently, heat transfer through vaporizer decreases because frost deposit form adiabatic sheet. Because of this reason, recent vaporizer system is installed as parallel type, this vaporizer system needs more expensive installation costs and more space. This paper was investigated on the heat transfer characteristics of liquefied gas vaporizer with super low temperature and this paper was carried out the numerical about air heating vaporizer with super low temperature. The numerical analysis on the heat transfer was studied on the effect of geometric parameters of the vaporizer, which are length 1000 mm of 4fin75le type vaporizer. 4fin75le means number of fin is 4 and height of fin is 75 mm.

  • PDF

독성가스 제거용 기포탑 반응기의 설계기법 (Design Parameters Estimations for Bubble Column Reactors to Remove Toxic Gases)

  • 오정환;홍민선
    • 한국위험물학회지
    • /
    • 제6권2호
    • /
    • pp.95-104
    • /
    • 2018
  • Gas-liquid bubble column reactors are extensively used in industrial processes. A detailed knowledge of bubble size distribution is needed for determining the mass transfer in gas-liquid film. Experimental data on bubble size distribution and liquid-side mass transfer coefficient($k_L$) were used to calculate the estimated time to saturation in bubble column reactor. Also, the gas flux was evaluated to the liquid-side mass transfer coefficient($k_L$) and solubility data for hydrogen sulfide($H_2S$) and chlorine($Cl_2$) absorption into water. Simulation results show that $H_2S$ absorption time to 50 % of saturation concentrations are 611 sec and 1,329 sec when bubble diameters are 0.5 mm and 4.5 mm, while absorbing 1 % $H_2S$ gas. In case of $Cl_2$, absorption time range 657 to 1,400 sec when bubble size range 0.5 mm to 4.5 mm, while absorbing 1 % $Cl_2$ gas. Calculated simulation results can be used in the design of emergency relief bubble reactors.

경사진 헬리컬 코일 열교환기의 열전달 특성에 관한 연구 (Heat Transfer Characteristics of Inclined Helical Coil Type Heat Exchanger)

  • 손창효;전민주;장승일;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.707-714
    • /
    • 2007
  • The heat transfer coefficient and Pressure drop during gas cooling process of $CO_2$ (R-744) in inclined helical coil copper tubes were investigated experimentally. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter, a pre-heater and a inclined helical coil type gas cooler (test section). The test section consists of a smooth copper tube of 2.45mm inner diameter. The refrigerant mass fluxes were varied from 200 to $600[kg/m^2s]$ and the inlet Pressures of gas cooler were 7.5 to 10.0 [MPa]. The heat transfer coefficients of $CO_2$ in the inclined helical coil tubes increases with the increase of mass flux and gas cooling pressure of $CO_2$. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those Predicted by Ito's correlation developed for single-phase in a helical coil tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However, at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al. correlation. Therefore. various experiments in the inclined helical coil tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in the inclined helical coil tubes.

이산화탄소의 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구 (Experimental Studies on Heat Transfer and Pressure Drop Characteristics during Gas Cooling Process of Carbon Dioxide in the Supercritical Region)

  • 윤석호;김주혁;김민수
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.538-545
    • /
    • 2004
  • This paper presents the experimental data for the heat transfer and pressure drop characteristics obtained during the gas cooling process of carbon dioxide in a horizontal tube. The tube in which carbon dioxide flows is made of copper with an inner diameter of 7.73 mm. Experiments were conducted for various mass fluxes and inlet pressures of carbon dioxide. Mass fluxes are controlled at 225, 337 and 450 kg/$m^2$s and inlet pressures are adjust-ed from 7.5 to 8.8 ㎫. The experimental results in this study are compared with the existing correlations for the supercritical heat transfer coefficient, which generally under-predict the measured data. Pressure drop data agree very well with those calculated by the Blasius' equation. Based on the experimental data, a new empirical correlation to estimate the near-critical heat transfer coefficients has been developed.

GMAW의 금속이행에 영향을 주는 변수연구를 위한 계측 시스템과 조건해석 (Study of variables influencing on the metal transfer in GMAW)

  • 이세헌
    • Journal of Welding and Joining
    • /
    • 제11권1호
    • /
    • pp.73-79
    • /
    • 1993
  • The phenomenon of metal transfer has been investigated for different transfer modes using a digital high speed motion analyzer and an arc shadow-graphing system based on a laser source and related optical system. It was observed that the pinch instability phenomenon did not occur for the globular transfer mode, since the liquid globule was then spherical rateher than a cylindrical liquid bar. On increasing the ratio of carbon dioxide to argon, the transition current from globular to spray transfer generally increased, but it is interesting that the transition was observed to occur at the lowest current in a 5% CO$_{2}$-95% argon gas mixture. For pure carbon dioxide and helium shielding gases, the drop frequency increased slowly with increasing current. At high currents or an argon based shielding gas, the length of liquid bar decreased as the carbon dioxide content increased. The acceleration of a droplet within the arc was determined using the gas drag force theory and was found to be greater than the experimental results.

  • PDF

연도가스 열회수용 순환유동층 열교환기의 오염저감특성 (Fouling Reduction Characteristics of a Fluidized Bed Heat Exchanger for Flue Gas Heat Recovery)

  • 이금배;전용두
    • 설비공학논문집
    • /
    • 제16권8호
    • /
    • pp.770-777
    • /
    • 2004
  • Fouling and cleaning tests are performed for a uniquely designed 7,000 ㎉/hr fluidized bed heat exchanger for exhaust gas heat recovery. Fuel rich condition is maintained in the combustor for a limited time period to generate soot that is to be deposited on the heat transfer surfaces (fouling) and 600 Um glass beads are circulated inside the heat exchanger system for cleaning and enhancing the heat transfer performance. According to the present experimental study, performance degradation mode could be monitored and the effect of particle circulation on the heat transfer improvement could be identified. Through the present study, it is demonstrated that circulating particles contribute not only to the fouling reduction in gas side, but also to the heat transfer enhancement of the unit, while other possible aging factors including water side corrosion seemed to contribute to the accumulated performance deterioration.

固體粉末이 浮上된 二相亂流 管流動의 熱傳達에 관한 硏究 (Study on the two phase turbulent heat transfer of gas-solid supension flow in pipes)

  • 김재웅;김봉기;최영돈
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.528-537
    • /
    • 1989
  • The objective of this paper is to investigate effects of the specific heat and the diameter of suspending particles on the heat transfer coefficient of two phase turbulent flow with suspension of solid particles in a circular tube with constant heat flux. Heat transfer coefficients of two phase turbulent flow in pipe with suspension of graphite powder were measured with variations of particle sizes and solid-gas loading ratio. Measured data were compared with predictions by numerical analysis in which the turbulece models are closed on the first order level. Results show that heat transfer coefficient increases with increasing the solid-gas loading ratio and the specific heat of suspending material, however, it decreases as the average diameter of particles decreases below $24{\mu}m$.

1600K급 가스터빈 연소실에서의 열특성 해석 (Thermal Characteristics in a Gas Turbine Combustion Liner with Firing Temperature of 1600K)

  • 윤남건;김경민;전윤흥;이동현;조형희;김문영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2984-2988
    • /
    • 2008
  • Numerical analyses are carried out in order to understand complex thermal characteristics of a gas turbine combustor liner such as combustion gas temperatures, wall temperatures and heat transfer distributions. As results, The maximum internal and external heat transfer is $2218W/m^2K$ and $2358W/m^2K$, respectively. The combustion gas temperatures range is 673K to 1760K. A range of temperature on TBC is 676K to 1382K. Lastly, temperature range on outer surface of combustion liner cooled by compressed air is 676K to 1188K.

  • PDF

트윈 로타리 압축기의 토출 가스 맥동 해석 (Analytical Study on the Discharge Gas Pulsation in a Twin Rotary Compressor)

  • 김현진;안종민;조광명
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.697-703
    • /
    • 2003
  • For a single stage two cylinder rotary compressor, an analytical study has been made on the discharge gas pulsation. Discharge system of the twin rotary compressor consists of lower and upper mufflers and connecting passage holes between them, and cavities on both sides of the motor and passages between them. Acoustic modeling for the discharge system by transfer matrix method gives acoustic impedances at discharge valves so that gas pulsation at the valve sections can be obtained from discharge mass velocity. Since the mass velocity and the pressure pulsation at the valves are affected by each other, iteration should be made for convergence. Gas pulsations at other sections can also be calculated by using transfer matrix.

  • PDF