• Title/Summary/Keyword: gas production

Search Result 2,675, Processing Time 0.027 seconds

Catalytic Technologies for Nitric Acid Plants N2O Emissions Control: In-Duct-Dependent Technological Options (질산제조 플랜트 N2O 제거용 촉매기술: 적용위치별 기술옵션)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.113-123
    • /
    • 2012
  • A unit emission reduction of nitrous oxide ($N_2O$) from anthropogenic sources is equivalent to a 310-unit $CO_2$ emission reduction because the $N_2O$ has the global warming potential (GWP) of 310. This greatly promoted very active development and commercialization of catalysts to control $N_2O$ emissions from large-scale stationary sources, representatively nitric acid production plants, and numerous catalytic systems have been proposed for the $N_2O$ reduction to date and here designated to Options A to C with respect to in-duct-application scenarios. Whether or not these Options are suitable for $N_2O$ emissions control in nitric acid industries is primarily determined by positions of them being operated in nitric acid plants, which is mainly due to the difference in gas temperatures, compositions and pressures. The Option A being installed in the $NH_3$ oxidation reactor requires catalysts that have very strong thermal stability and high selectivity, while the Option B technologies are operated between the $NO_2$ absorption column and the gas expander and catalysts with medium thermal stability, good water tolerance and strong hydrothermal stability are applicable for this option. Catalysts for the Option C, that is positioned after the gas expander thereby having the lowest gas temperatures and pressure, should possess high de$N_2O$ performance and excellent water tolerance under such conditions. Consequently, each de$N_2O$ technology has different opportunities in nitric acid production plants and the best solution needs to be chosen considering the process requirements.

A Study on Semi Quantitative Risk Analysis for Air Separation Unit using a GRA(Generic Risk Analysis) Method (GRA(Generic Risk Analysis) 기법을 이용한 공기분리시설에 대한 준 정량적 위험성 평가에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.56-66
    • /
    • 2013
  • The gas production plants supply the inert gas to production plants for maintaining safe operation and also supply combustible, flammable, explosive and toxic gases as functions of basic materials needed for producing chemical goods. In addition, gas plants need to be safe and reliable operation because they are operated under high temperature, high pressure, cryogenic and catalytic reactions. As these plants have a complex process in operation, there has been a risk that major industrial accidents such as a fire, explosion and toxic gas released, also risks of asphyxiations by inert gases and burns caused by high temperature and cryogenic substances. This study is to carry out the semi quantitative risk assesment method which is the generic risk analysis (GRA). This method is applied to air separation unit(ASU) to identify its initial risk, safety barriers, residual risk and elements important for safety(EIS). The result of this study, suggested the management tools and procedures of implementation for EIS management.

DEVELOPMENT OF COMBIND WELDING WITH AN ELECTRIC ARC AND LOW POWER CO LASER

  • Lee, Se-Hwan;Massood A. Rahimi;Charles E. Albright;Walter R. Lempert
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.176-180
    • /
    • 2002
  • During the last two decades the laser beam has progressed from a sophisticated laboratory apparatus to an adaptable and viable industrial tool. Especially, in its welding mode, the laser offers high travel speed, low distortion, and narrow fusion and heat-affected zones (HAZ). The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. Although high-power laser beams have been combined with the plasma from a gas tungsten arc (GTA) torch for use in welding as early as 1980, recent work at the Ohio State University has employed a low power laser beam to initiate, direct, and concentrate a gas tungsten arcs. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process known as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma (LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well focused melted spots.

  • PDF

A Study on the storage of Fresh Fruits and Vegetables (Part II) Effects of Intercellular atmosphere and Ethylene evolution by control of external pressure and gas composition in Apple Fruits. (청과물 저장에 관한 연구(제 2보) -사과 저장에 있어서 환경압력 및 기체조성이 사과조직내 기체조성과 Ethylene 생성에 미치는 영향-)

  • 손태화;최종욱;서온수
    • Microbiology and Biotechnology Letters
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1973
  • Experiments were carried out to clarify changes of intercellular gas composition, respiration and ethylene evolution by controlled external atmospheric pressure and external gas composition on apples. Jonathan apples, harvested 25, in September and Rolls apples, harvested 25, in October, 1971 and 1972 were used. Results obtained were as follows: 1. Intercellular gas volumes were proportionally changed by the given pressure, and the given pressure remarkably affected internal gas composition and volume of apples. As intercellular gas volumes were reached in their equilibrium within 5 min. after treatment, the internal atmospheric conditions became constant rapidly. 2. The increase of internal $CO_2$ production was co-related with an amount of internal $O_2$ consumption, therefore, the decreasing period of internal $O_2$ consumption was equalled to the period of climacteric rise in respiration. 3. The increasing of $CO_2$ production followed evolution of $C_2$H$_4$ and this phenomenon on SAP part. was subsequent to NAP part 4. In sub-atmospheric storage, CA effect was also obtained by control of low $O_2$ and high $CO_2$ concentration.

  • PDF

Modification of an LPG Engine Generator for Biomass Syngas Application (바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가)

  • Eliezel, Habineza;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

Research of Dry Reduction Process of Waste Tin Oxide using Methane (메탄가스를 이용한 폐주석산화물의 건식환원시스템)

  • Hyun-Chul Jung;Se-Kwon Kim;Sang-Yeol Kim
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.18-24
    • /
    • 2022
  • Dry reduction using natural gas was proposed to recover tin from waste tin oxide generated in a tin bath that was used for controlling the smoothness of architectural glass during production, and the reduction behavior was investigated. The utilized vertical natural gas dry reduction system is capable to process 4 L or 20 kg depending on input raw materials. The system was established by applying the upper intake and lower discharge method. The recovery rate was 97.2% at 800 ℃ and 4 sccm flow rate and increased with the amount of input gas. Hydrogen accounted for 23% of the discharge gas, showing a 16.6% hydrogen conversion rate. The reaction behavior of tin recovered via natural gas reduction provides basic data on the new waste resource reduction/recovery technology.

Fermentation Characteristics, Tannin Contents and In vitro Ruminal Degradation of Green Tea and Black Tea By-products Ensiled at Different Temperatures

  • Kondo, Makoto;Hirano, Yoshiaki;Kita, Kazumi;Jayanegara, Anuraga;Yokota, Hiro-Omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.937-945
    • /
    • 2014
  • Green and black tea by-products, obtained from ready-made tea industry, were ensiled at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. Green tea by-product silage (GTS) and black tea by-product silage (BTS) were opened at 5, 10, 45 days after ensiling. Fermentation characteristics and nutrient composition, including tannins, were monitored and the silages on day 45 were subjected to in vitro ruminal fermentation to assess anti-nutritive effects of tannins using polyethylene glycol (PEG) as a tannin-binding agent. Results showed that the GTS and BTS silages were stable and fermented slightly when ensiled at $10^{\circ}C$. The GTS stored at $20^{\circ}C$ and $30^{\circ}C$ showed rapid pH decline and high acetic acid concentration. The BTS was fermented gradually with moderate change of pH and acid concentration. Acetic acid was the main acid product of fermentation in both GTS and BTS. The contents of total extractable phenolics and total extractable tannins in both silages were unaffected by storage temperatures, but condensed tannins in GTS were less when stored at high temperature. The GTS showed no PEG response on in vitro gas production, and revealed only a small increase by PEG on $NH_3$-N concentration. Storage temperature of GTS did not affect the extent of PEG response to both gas production and $NH_3$-N concentration. On the other hand, addition of PEG on BTS markedly increased both the gas production and $NH_3$-N concentration at any ensiled temperature. It can be concluded that tannins in both GTS and BTS suppressed rumen fermentation, and tannins in GTS did more weakly than that in BTS. Ensiling temperature for both tea by-products did not affect the tannin's activity in the rumen.

Effect of Different Level of Monensin Supplemented with Cold Process Urea Molasses Mineral Block on In vitro Rumen Fermentation at Different Days of Adaptation with Monensin

  • De, Debasis;Singh, G.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.320-325
    • /
    • 2005
  • Effect of period of adaptation and levels of monensin were studied for microbial fermentation/ digestibility to find out the optimum period of adaptation of monensin in rumen and suitable level of monensin in wheat straw+concentrate and wheat straw+UMMB diet. The mean digestibility of dry matter was decreased upto T-3 treatment (49.17%), however, digestibility of DM was affected upto period (P-2). NDF digestibility was affected due to treatment under P1 and P2 (p<0.05). Average digestibility of ADF was increased to 53.33% at T-3 level of monensin and P4 days of adaptation. TVFA (mmole/100 ml) were decreased from 9.49 in T-1 to 7.70 in T-7. Periods were not effectives except P2 (14 days of adaptation). Similarly, total gas was decrease with the increase of monensin levels in diet. Although acetate percentage in TVFA was not affected either due to level of monensin or period of adaptation but propionate was increased due to increase in monensin at 21 days of adaptation (P-3). Butyrate (%) was decreased significantly in T-2 to T-6 as compared to T-1 group. Total gas was significantly (p<0.01) higher in group T-1 (control) and it reduced significantly in T-5, however, differences in gas production between group T-3, T-5 and T-7 at P-1 was not significant. Methane production was reduced on P-3 and P-4 level of adaptation due to treatment. The overall result indicated that 21 days of adaptation with monensin was sufficient to mask the inhibiting effect of monensin to cell wall digestibility and 35 ppm monensin is optimum to reduce methane production and increase propionate productions.

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.