• Title/Summary/Keyword: gas production

Search Result 2,690, Processing Time 0.039 seconds

Effect of seeding date on growth , dry matter accumulation and chemical composition of sorghum , sudangrass and sorghum-sudangrass Hybrid (파종기 이동이 수수 , 수단그라스 및 수수$\times$수단그라스 교잡종의 생육 , 건물축적 및 성분 함량에 미치는 영향)

  • 한흥전;안수봉
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.62-72
    • /
    • 1985
  • In order to find out the effects of seeding time on growth, dry matter production and nutritive content of Pioneer 931, Pioneer 988 and Piper, this study was carried out on the experimental field of Livestock Experiment Station in 1981-83. Seeding time were 7 with 14-day interval from April 16 to July 9. The results are summarized as follows: 1. It tool about 12 to 13 days from seeding to emergence in case of Mid-April seeding and 7 to 8 days in Late-June. Earlier seeding, more longer growth period from emergence to heading they required. 2. Plant height of Pioneer 931 seeded lately was longer than 4.5 meters in primary growth and Sudangrass was about 2.0 to 2.5 meters. Leaf area was the greatest in Mid-August by early seeding but it was increased until Early-October by late seeding. 3. Sorghum gas brought the highest yield in dry mater and Sudangrass the lowest. In general dry matter yield reduced gradually in response to later seeding but Pioneer 931 has brought more than 10 tons per hecter until Late-June. 4. Relative Growth Rate, Leaf Area Ratio and Leaf Weight of all varieties decreased in accordance with growth development. 5. Crude protein content of leaf was higher than stem and the younger the plants, the more protein they contain. Nitrogen Free Extract was just opposite to crude protein.

  • PDF

Utilization of Wood Chips for Disposing of Swine Manure (목질칩의 축분뇨 정화재로의 이용)

  • Choi, In-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.203-210
    • /
    • 2001
  • In order to environmentally use wood chips manufactured from low valued forest resources by forest tendering, wood chips were used for the evaluation on chips characteristics, decomposition capability of organic wastes, and field experiment and determination of conditions for decomposer. Bioclusters manufactured by Cryptomeria japonica, commercially available wood chips in Japan, showed higher pore ratio, water reservation and water resistance, and higher cellulose content with lower hot water solubles than domestic wood chips. The useful size of wood chips for swine manure decomposition was 10 (length) ${\times}$ 5 (width) ${\times}$ 2 (thickness) mm, and cellulose contents and alkali solubles of Pinus densiflora and Populus tomentiglandulosa were similar to those of bioclusters. According to the decomposition ratio depending on wood species, it was ordered as Pinus densiflora > Pinus koraiensis > Cryptomeria japonica. The swine manure decomposition ratio depending on treatment hours by Pinus koraiensis was constant with the ratio of 15 to 16 g per hour by 1 kg of chip, indicating of daily swine decomposition amount of 390 kg by 1 ton of chips which was equal to the amount of daily swine manure production by 70 swines. Analyzing by long term used wood chips during 40 days treatment, the treated wood chips characteristically showed stable total nitrogen content, suitable pH, high accumulation of inorganic contents such as calcium, phosphorus, potassium and sodium, and no odor. During winter, the inner temperature of decomposer was kept at $43^{\circ}C$, but air bubble was occurred due to high pH and viscosity of swine manure. The most appropriate mixing ratio between wood chips and swine manure was 1 versus 2 or 3, and at more than ratio 1 versus 3, ammonia gas was caused because of anaerobic fermentation status by high moisture content of wood chips. The mixing interval of decomposer was 3 mins. per hour for the best swine decomposition.

  • PDF

Pathogenic Staphylococcus epidermidis isolated from cultured fingerling of sea bass, Lateolabrax japonicus, in Korea (남해안 양식산 농어, Lateoabrax japonicus 치어에서 분리한 병원성 Staphylococcus epidermidis에 관한 연구)

  • Cha, Yong-Baeg;Yang, Han-Choon;Choi, Sang-Duk;Cho, Jae-Kwon
    • Journal of fish pathology
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • Major object of this study was to investigate the causative organism of th e diseased cultured fingerling of sea bass, L japonicus. The experimental results are summarized as follows ; Staphylococcus epidermidis, isolated from the liver, kidney, spleen and brain, was considered to be the causative organism. External symptoms of this disease were congestion and hemorrhages in eyes. Anatomical symptoms were hemorrhage of brain, congestion of liver, and slight swelling of kidney and spleen. Growth of the isolates was good on BHIA, HIA and Staphylococcus No. 110. The growth occurred at a range(optimum) of $10\sim45^{\circ}C(35\sim40^{\circ}C)$, 0~9% (1~3%) of NaCl concentration and pH 4~10(8). DNase and coagulase production of all isolated strains were nagative, but was positive in hemolysis. Urease was positive reaction, and novobiocin resistance was nagative. Acid was produced anaerobically from glucose and maltose. Acid was produced aerobically from glucose, galactose, sucrose, maltose and dextrine. But gas was not produced from any carbohydrates. When the isolated strain was injected intramuscularly on fingerling of sea bass, L japonicus, it had virulence at $1.7{\times}10^{10}$ viable cells/$m\ell$ for all fish examined but no virulence at $1.7{\times}10^4$ viable cells/$m\ell$. Bacitracin, Erythromycin and Nofloxacin were observed as bacteriostatic agents to the strain, but Colistin, Gentamicin and Nalidixic acid were not. There were remarkable congestion of the brain, regressive necrosis of the liver, and showed necrosis of the epithelial cells of renal tubules in kidney tissues.

  • PDF

Effects of Prebiotics and Probiotics on Swine Intestinal Microflora and Fermentation Products In Vitro Fermentation (In vitro 발효에서 Prebiotics와 Probiotics가 돼지 장내미생물과 발효산물에 미치는 영향)

  • Kim, Dong-Woon;Chae, Su-Jin;Kim, Young-Hwa;Jung, Hyun-Jung;Lee, Sung-Dae;Park, Jun-Cheol;Cho, Kyu-Ho;Sa, Soo-Jin;Kim, In-Cheul;Kim, In-Ho
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • In the present study, the effects of prebiotics and prebiotics+probiotics on intestinal microflora and fermentation products were evaluated in a pig in vitro fermentation model. The substrates used in this study were iso-malto oligosaccharide (IMO), partially digested chicory-inulin (CI), raffinose (RA), and cyclodextrin (CD) as prebiotics and Lactobacillus reiteri as probiotics. For a pig in vitro fermentation, the experimental diet for growing pigs was predigested using digestive enzymes secreted by small intestine and this hydrolyzed diet was mixed with a buffer solution containing 5% fresh swine feces. The mixture was then incubated with either prebiotics or prebiotics+probiotics for 24 h. Samples were taken at 24 h, and viable counts of microflora, gas, pH, volatile organic compounds (VOCs) and short-chain fatty acid (SCFA) were analyzed. The viable count of Enterobacteriaceae was significantly decreased (p<0.001) in all treatments containing prebiotics and prebiotics+probiotics when compared to the control. However, the number of lactic acid bacteria increased in the prebiotics and prebiotics+probiotics treatment. The pH values in the fermentation fluid decreased in all treatments when compared to the control, and their effects were greater in the prebiotics+probiotics group than prebiotics group. Fermentation with prebiotics resulted in a reduction in malodorous compounds such as ammonia, hydrogen sulfide and skatole when compared to the prebiotics+probiotics group. Short-chain fatty acid production was also higher for treatment with prebiotics+probiotics than treatment with prebiotics. In conclusion, the results of this study demonstrated that fermentation with prebiotics was effective in reducing the formation of malodorous compounds and prebiotics+probiotics was effective in increasing lactic acid bacteria and SCFA and reducing the pH. Moreover, further studies will be needed to determine whether the results observed in the in vitro model would occur in pigs that ingest these prebiotics or probiotics.

Microbe and Quality Changes of Ready-to-Eat Lettuce during Storage at Different Temperatures (신선편이 양상추의 온도별 저장 중 미생물과 품질변화)

  • Cho, Sun-Kyung;Kwon, Hye-Soon;Park, Jong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1867-1872
    • /
    • 2010
  • Microbe and quality changes of vacuum-packaged ready-to-eat lettuce were analyzed. While the vacuumpackaged lettuce after chlorine sanitizer were stored at $5^{\circ}C$, $15^{\circ}C$, and $25^{\circ}C$ for 7 days, viable numbers of total aerobic bacteria (TAB), coliform, E. coli, food-borne pathogens and lactic acids bacteria (LAB) were counted with gas production and sensory evaluation. Before the storage, only TAB of 2 log CFU/g and coliform of 1 log CFU/g were detected and LAB was not detected. TAB, coliform and LAB increased by 1 log CFU/g at $5^{\circ}C$ for 7 days without any detection of the pathogens. Sensory evaluations for off-flavour and crispness dropped to half the best value at 5 day storage. TAB and coliform increased by 3 log CFU/g and 2 log CFU/g, respectively, but LAB grew very actively by 4 log CFU/g under anaerobic environment and only B. cereus were detected after enrichment of the lettuce at $15^{\circ}C$ for 3 days. The evaluations for off-flavour and crispness were half the best value for 3 days. However, TAB and coliform increased by 3 log CFU/g, 1 log CFU/g, and 4 log CFU/g, respectively only at 1 day storage under $25^{\circ}C$. Also B. cereus were detected after enrichment and the sensory evaluation were half the best value within 1 day storage. Therefore, preservation at the lowest temperature possible is required for growth inhibition of the bacteria contaminated in the lettuce. Interestingly, LAB among them grew most actively under the anaerobic condition and the adulteration of lettuce might be closely related with the growth of LAB.

Development of 'Carbon Footprint' Concept and Its Utilization Prospects in the Agricultural and Forestry Sector ('탄소발자국' 개념의 발전 과정과 농림 부문에서의 활용 전망)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.358-383
    • /
    • 2015
  • The concept of 'carbon footprint' has been developed as a means of quantifying the specific emissions of the greenhouse gases (GHGs) that cause global warming. Although there are still neither clear definitions of the term nor rules for units or the scope of its estimation, it is broadly accepted that the carbon footprint is the total amount of GHGs, expressed as $CO_2$ equivalents, emitted into the atmosphere directly or indirectly at all processes of the production by an individual or organization. According to the ISO/TS 14067, the carbon footprint of a product is calculated by multiplying the units of activity of processes that emit GHGs by emission factor of the processes, and by summing them up. Based on this, 'carbon labelling' system has been implemented in various ways over the world to provide consumers the opportunities of comparison and choice, and to encourage voluntary activities of producers to reduce GHG emissions. In the agricultural sector, as a judgment basis to help purchaser with ethical consumption, 'low-carbon agricultural and livestock products certification' system is expected to have more utilization value. In this process, the 'cradle to gate' approach (which excludes stages for usage and disposal) is mainly used to set the boundaries of the life cycle assessment for agricultural products. The estimation of carbon footprint for the entire agricultural and forestry sector should take both removals and emissions into account in the "National Greenhouse Gas Inventory Report". The carbon accumulation in the biomass of perennial trees in cropland should be considered also to reduce the total GHG emissions. In order to accomplish this, tower-based flux measurements can be used, which provide a direct quantification of $CO_2$ exchange during the entire life cycle. Carbon footprint information can be combined with other indicators to develop more holistic assessment indicators for sustainable agricultural and forestry ecosystems.

Analysis of the Component and Immunological Efficacy of Chamaecyparis obtusa Leaf Extract (편백나무 잎 추출물의 성분분석과 면역효능에 관한 연구)

  • Kim, Joung Hee;Lee, Syng-Ook;Do, Kook Bae;Ji, Won Dae;Kim, Sun Gun;Back, Young Doo;Kim, Keuk-Jun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.1
    • /
    • pp.37-43
    • /
    • 2018
  • Chamaecyparis obtusa (CO) has recently been attracting attention because of its beneficial effects on skin allergies, atopic dermatitis, and skin diseases, such as acne and eczema. In the present study, the extract from CO leaf grown in Jangseong gun, Jeollanam-do, Korea was evaluated for its anti-oxidant, anti-inflammatory, and anti-allergic effects in vitro. The total polyphenol content of the CO leaf extract was $25.89{\pm}0.31mg$ gallic acid equivalents (GAE)/g. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed the presence of six compounds in the CO leaf extract: ${\alpha}-terpinene$ (3.03 mg/g), ${\alpha}-terpineol$ (9.48 mg/g), limonene (5.96 mg/g), borneol (59.78 mg/g), myrcene (4.85 mg/g), and sabinene (11.31 mg/g). The $RC_{50}$ values of the CO leaf extract for $H_2O_2$ and ABTS radical were $5.47{\pm}0.13mg/mL$ and $4.00{\pm}0.01mg/mL$, respectively. In addition, the CO leaf extract showed significant inhibitory effects on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells and IgE-induced release of ${\beta}-hexosaminidase$ (degranulation) in mast-cell like RBL-2H3 cells. The cell viability assay showed that the CO leaf extract ($100{\sim}800{\mu}g/mL$) did not affect the viability of human normal skin fibroblast CCD-986sk cells significantly. Overall, these results suggest that the CO leaf extract is a potential functional cosmetic ingredient that can exert anti-oxidant, anti-inflammatory, and anti-allergic effects.

Preparation of Korean Traditional Alcoholic Beverage (Yakju) by a Protoplast Fusion Yeast Strain Utilizing Starch and its Quality Characteristics (전분분해 효모융합체를 이용한 전통 발효주의 제조와 품질특성)

  • Ju, Min-No;Hong, Sung-Wook;Kim, Kwan-Tae;Yum, Sung-Kwan;Kim, Gye-Won;Chung, Kun-Sub
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.541-546
    • /
    • 2009
  • The objectives of this study were to evaluate the physico-chemical and sensory characteristics of a Korean traditional alcoholic beverage (yakju) prepared using different nuruk (Korean-style koji) concentrations and yeasts such as the fusant FA776 and Saccharomyces cerevisiae KOY-1, respectively. The fusant FA776, which has alcohol-fermenting and starch-utilizing properties, was formed by Saccharomyces cerevisiae KOY-1 and Saccharomyces diastaticus KCTC1804. The fermentation trial was conducted in a 5 L lab-scale jar at $25^{\circ}C$. The maximum alcohol production of the K-100 and F-50 reached levels of 135.0 mg/mL and 119.4 mg/mL, respectively. The pH values were in a range of 4.3-4.5. Total acidity was in a range of 0.47-0.60%. Organic acids and amino acids were analyzed in order to evaluate variations in its composition and content via HPLC analysis. Organic acids including lactic acid, citric acid, malic acid, and pyruvic acid, and 16 kinds of amino acids, including aspartic acid, were detected in all treatments. K-100 showed the highest amino acid contents, whereas F-50 exhibited the lowest amino acid contents. Volatile flavor components such as phenylethyl alcohol, isoamyl alcohol, 2-methylthiophane, isobutyl alcohol, and ethyl succinate were detected as a major component in all treatments, as determined via gas chromatography. The results of our sensory evaluation demonstrated that Yakju fermented by the FA776 fusant yielded more favorable results than S. cerevisiae KOY-1.

Analysis of the Factors Affecting Anaerobic Thermophilic Digestibility of Food Wastes (음식물쓰레기의 고온 혐기성 소화도에 미치는 요소에 대한 분석)

  • Kim, Do Hee;Hyun, Seung Hoon;Kim, Kyung Woong;Cho, Jaeweon;Kim, In S.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.130-139
    • /
    • 2000
  • Serial basic tests were conducted for the determination of fundamental kinetics and for the actual application of kinetic parameter to food waste digestion with precise measurement of methane production under a thermophilic condition. The effects of food particle size, sodium ion concentration, and volatile solid (VS) loading rate on the anaerobic thermophilic food waste digestion process were investigated. Results of serial test for the determination of fundamental kinetic coefficients showed the value of k (maximum substrate utilization rate coefficient) and KS (half-saturation coefficient) as $0.24hr^{-1}$ and $700mg/{\ell}$, respectively, for non-inhibiting organic loading range. No inhibition effect was shown until $5g/{\ell}$ of sodium ion concentration was applied to a serum bottle reactor. However, the volume of methane gas was decreased gradually when the concentrations of more than $5g/{\ell}$ of sodium ion applied. All sizes of food waste particle showed the same constants (A : 0.45) but the maximum substrate utilization rate constant ($k_{HA}$) was inversely proportional to particle size. As an average particle size increased from 1.02 mm to 2.14 mm, $k_{HA}$ decreased from $0.0033hr^{-1}$ to $0.0015hr^{-1}$. The result reveals that particle size is one of the most important factors in anaerobic food waste digestion. There was no inhibition effect of sodium ion when VS loading rate was $30g/{\ell}$. And maximum injection concentration of VS loading rate was determined about $40g/{\ell}$.

  • PDF

A Study of Burcucumber Biochars to Remediate Soil Pb Considering GWP (Global Warming Potential) (GWP (Global Warming Potential)를 고려한 가시박 바이오차르의 토양 납 제거 효과 분석)

  • Kim, You Jin;Park, Han;Kim, Min-Ho;Seo, Sung Hee;Ok, Yong Sik;Yoo, Gayoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.432-440
    • /
    • 2015
  • Biochar, a by-product from pyrolysis of biomass, is a promising option to mitigate climate change by increasing soil carbon sequestration. This material is also considered to have potential to remediate a soil with heavy metal pollution by increasing the soil's adsorptive capacity. This study conducted the assessment of two biochars considering the climate change mitigation potential and heavy metal removal capacity at the same time. Two kinds of biochars (BC_Ch, TW_Ch) were prepared by pyrolyzing the biomass of burcucumber (BC_Bm) and tea waste (TW_Bm). The soils polluted with Pb were mixed with biochars or biomass and incubated for 60 d. During the incubation, $CO_2$, $CH_4$, and $N_2O$ were regularly measured and the soil before and after incubation was analyzed for chemical and biological parameters including the acetate extractable Pb. The results showed that only the BC_Ch treatment significantly reduced the amount of Pb after 60 d incubation. During the incubation, the $CO_2$ and $N_2O$ emissions from the BC_Ch and TW_Ch were decreased by 24% and 34% compared to the BC_Bm and TW_Bm, respectively. The $CH_4$ emissions were not significantly affected by biochar treatments. We calculated the GWP considering the production of amendment materials, application to the soils, removal of Pb, and soil carbon storage. The BC_Ch treatment had the most negative value because it had the higher Pb adsorption and soil carbon sequestration. Our results imply that if we apply biochar made from burcucumber, we could expect the pollution reduction and climate change mitigation at the same time.