• 제목/요약/키워드: gas production

검색결과 2,690건 처리시간 0.025초

Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility

  • Soliman, Ahmed E.;Eltaher, Mohamed A.;Attia, Mohamed A.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.85-96
    • /
    • 2018
  • This study investigates the response of functionally graded (FG) gas pipe under unsteady internal pressure and temperature. The pipe is proposed to be manufactured from FGMs rather than custom carbon steel, to reduce the erosion, corrosion, pressure surge and temperature variation effects caused by conveying of gases. The distribution of material graduations are obeying power and sigmoidal functions varying with the pipe thickness. The sigmoidal distribution is proposed for the 1st time in analysis of FG pipe structure. A Two-dimensional (2D) plane strain problem is proposed to model the pipe cross-section. The Fourier law is applied to describe the heat flux and temperature variation through the pipe thickness. The time variation of internal pressure is described by using exponential-harmonic function. The proposed problem is solved numerically by a two-dimensional (2D) plane strain finite element ABAQUS software. Nine-node isoparametric element is selected. The proposed model is verified with published results. The effects of material graduation, material function, temperature and internal pressures on the response of FG gas pipe are investigated. The coupled temperature and displacement FEM solution is used to find a solution for the stress displacement and temperature fields simultaneously because the thermal and mechanical solutions affected greatly by each other. The obtained results present the applicability of alternative FGM materials rather than classical A106Gr.B steel. According to proposed model and numerical results, the FGM pipe is more effective in natural gas application, especially in eliminating the corrosion, erosion and reduction of stresses.

RPF(Refuse plastic fuel) 합성가스의 수성가스 전환 반응 연구 (A Study on the Water Gas Shift Reaction of RPF Syngas)

  • 노선아
    • 자원리싸이클링
    • /
    • 제30권6호
    • /
    • pp.12-18
    • /
    • 2021
  • 수성가스 전환 반응은 가스화로 생성된 합성 가스에 수소 생산 증가와 H2/CO 비율 제어를 위해 수증기를 첨가하는 가스화 후속 공정이다. 본 연구에서는 RPF(Refuse plastic fuel) 가스화 시스템의 합성가스를 대상으로 수성가스 전환 반응을 연구하였다. 수성가스 전환 반응은 촉매를 이용하여 high temperature shift(HTS) 와 low temperature shift(LTS) 반응에 대하여 lab scale 관형 반응기를 이용하여 반응 온도, steam/carbon ratio, 유량의 변화가 H2 생성과 CO 전환율에 미치는 영향을 조사하였다. 운전 온도는 HTS 시스템이 250-400℃, LTS 시스템이 190-220℃이며 steam/carbon ratio는 1.5-3.5로 변화시켰다. 반응 모의 가스의 농도는 RPF 합성가스의 농도를 기준으로 CO, 40vol%, H2, 25vol%, CO2, 25vol%이다. 반응 온도와 steam/carbon ratio가 증가함에 따라 CO 전환율 및 H2 생성량이 증가하고, 유량이 증가하면 촉매층의 체류시간 단축으로 CO 전환율과 H2 생성량이 감소하였다.

광역시·도별 자료를 이용한 에너지, 경제성장, 온실가스 배출 간의 관계 분석 (Analysis of the Relationships among Energy, Economic Growth and Greenhouse Gas Emissions Using Metropolitan City/Province Level Data)

  • 이재석;이근대;유복근
    • 자원ㆍ환경경제연구
    • /
    • 제30권3호
    • /
    • pp.503-533
    • /
    • 2021
  • 본 연구는 2010~18년 동안의 우리나라 16개 광역시·도(세종시 제외)별 자료와 패널 벡터자기회귀(Panel VAR) 모형을 이용하여 에너지 소비량, 신재생에너지 생산량, 실질 지역 내 총생산, 온실가스 배출량 간의 관계를 실증분석하였다. 분석 결과, 에너지 소비 증가가 신재생에너지 생산 및 지역 내 총생산을 증가시키는 효과는 제한적인 가운데 온실가스 배출을 증가시키는 것으로 나타났다. 신재생에너지 생산 증가는 지역 내 총생산을 증가시킬 수 있는 반면 에너지 소비 및 온실가스 배출량 저감에는 대체로 유의미한 영향을 미치지 않았다. 이러한 분석 결과는 국가 온실가스 저감과 지역 경제성장 목표 달성을 위해서는 에너지 소비 감소와 함께 신재생에너지 보급 확대가 중요함을 보여준다.

액체 수소 생산을 위한 예냉 시스템의 수소 가스 예냉 온도 및 열 교환기 면적에 관한 연구 (Study on Hydrogen Gas Pre-cooling Temperature and Heat Exchanger Area of Pre-cooling System for Production of Liquid Hydrogen)

  • 배민관;하동우;노현우;우승빈;허기;서영민
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.290-299
    • /
    • 2024
  • In this study, a theoretical study was conducted on the pre-cooling temperature of hydrogen gas and the heat exchanger area in a small-scale liquefied hydrogen system. The small-scale liquefaction system was built and liquid hydrogen production experiments were performed. In this process, the temperature of precooled hydrogen gas was measure to be about 120 K, and then the possibility of a cause was analyzed through pressure analysis of hydrogen gas and container, and analysis of the amount of liquid hydrogen produced. It was found that some reasonable results were obtained from the theoretical approaches. Based on this theoretical approach, we aim to improve the production of liquid hydrogen by optimizing the heat exchange area according to flow rate.

Nozzle effect on the formation of Methane hydrate

  • 서향민;박성식;김남진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.226-229
    • /
    • 2008
  • When methane hydrate is artificially formed to store and transport large quantity of natural gas, its reaction time may be too long and the gas consumption in water becomes relatively low, the reaction rate between water and methane gas is low. Therefore, the present investigation focuses on the rapid production of hydrates and increases the gas consumption by injecting water into methane gas utilizing nozzle. the hydrate in water injection using a nozzle formed rapidly more than that in gas injection, and the gas consumption of methane hydrate in water injection is about three to four times greater than that in gas injection according to subcooling.

  • PDF

메탄 하이드레이트 생성촉진을 위한 노즐 분사효과 연구 (Nozzle Effect for the Formation Enhancement of Methane Hydrate)

  • 김남진;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제28권6호
    • /
    • pp.8-14
    • /
    • 2008
  • Methane hydrate is crystalline ice-like compounds which consist of methane gas of 99% and over, and the estimated amount of gas contained in hydrates is about 1 trillion carbon Ton. Therefore, they have the potential for being a significant source for natural gas, and 1$m^3$ solid hydrates contain up to 172N$m^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, the tests were performed on the formation of methane hydrate by a nozzle. The result showed that utilizing nozzles dramatically reduces the time in hydrate formation, the pressure after the injection is decreased to be approximately 90% of experimental pressurethe, and gas consumption is higher about 3 times than that of subcooling test.

Atmospheric Pressure Plasma Research Activity in Korea

  • Uhm, Han S.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.367-377
    • /
    • 2001
  • Plasma is generated by electrical discharge. Most plasma generation has been carried out at low-pressure gas typically less than one millionth of atmospheric pressure. Plasmas are in general generated from impact ionization of neutral gas molecules by accelerated electrons. The energy gain of electrons accelerated in an electrical field is proportional to the mean free path. Electrons gain more energy at low-pressure gas and generate plasma easily by ionization of neutrals, because the mean free path is longer. For this reason conventional plasma generation is carried out at low pressures. However, many practical applications require plasmas at high-pressure. In order to avoid the requirement for vacuum pumps, researchers in Korea start to develop plasmas in high-pressure chambers where the pressure is 1 atmosphere or greater. Material processing, environmental protection/restoration and improved energy production efficiency using plasmas are only possible for inexpensive bulk plasmas. We thus generate plasmas by new methods and plan to set foundations for new plasma technologies for $21^{st}$ / century industries. This technological research will play a central role in material processing, environmental and energy production industries.

  • PDF

Aloe 세포 배양계에서 $CO_2,\;O_2,\;C_2H_4$ gas가 세포 생장 및 다당체 생산에 미치는 영향

  • 박태영;조규헌;허원;김동일
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.325-327
    • /
    • 2000
  • 본 연구에서는, gas 성분의 조성을 on-line으로 자동제어할 수 있는 시스템을 확립하고, 이를 이용하여 각 성분들이 식물세포에 미치는 영향에 대해 조사하였다. 실험결과, $CO_2$가 첨가되었을 때, 세포의 생장에는 큰 차이를 볼 수 없었으나, 2차 대사물 및 polysaccharide의 생산성을 증대시켰다. 특히, polysaccharide의 경우, $CO_2$가 참가되었을 때 1.8배의 생산성 증대를 나타내었다.

  • PDF

수소센서 기술의 고찰과 최근동향 (Review and new trends of hydrogen gas sensor technologies)

  • 한상도
    • 센서학회지
    • /
    • 제19권2호
    • /
    • pp.67-86
    • /
    • 2010
  • Hydrogen is emerging as clean fuel and important industrial raw materials. The hydrogen gas is not sensed by the human olfactory system, But the combustion characteristics of hydrogen is that the ignition is very easy, the propagation speed of the flame is very fast and explosion limits is a wide range of 4 %~75 %. Therefore it is extremely in danger, and the need for its leakage detection technologies is especially important in places such as a production, transportation, storage and usage. The hydrogen sensors are classified with ceramic type, semiconductor type, optical type, electrochemical type and so on. Hydrogen sensors and their technologies are reviewed in detail for materials, fabrication process, sensing characteristics, good point and faults, and production and utilization of sensors be discussed.