• Title/Summary/Keyword: gas production

Search Result 2,675, Processing Time 0.035 seconds

Atomization Using a Pressure-Gas-Atomizer

  • Achelis, Lydia;Uhlenwinkel, Volker;Lagutkin, S.;Sheikhaliev, Sh.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.4-5
    • /
    • 2006
  • An update and the latest results on molten metal atomization using a Pressure-Gas-Atomizer will be given. This atomizer combines a swirl-pressure atomizer, to generate a liquid hollow cone film and a gas atomizer to atomize the film and/or the fragments of the film. The paper is focused on powder production, but this atomization system is also applicable for deposition purposes. Different alloys (Sn, SnCu) were atomized to study the characteristics of the Pressure-Gas-Atomizer.

  • PDF

Methane Production of Different Forages in In vitro Ruminal Fermentation

  • Meale, S.J.;Chaves, A.V.;Baah, J.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on $CH_4$ production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at $55^{\circ}C$ and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall's buffer and rumen fluid were incubated under anaerobic conditions at $39^{\circ}C$ for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, $CH_4$ production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate $CH_4$ emissions without compromising digestion. Grazing of these two species may be a strategy to reduce $CH_4$ emissions however further assessment in in vivo trials and at different stages of maturity is recommended.

Hydrogen Gas Production from Biogas Reforming using Plasmatron (플라즈마트론을 이용한 바이오가스 개질로부터 수소생산)

  • Kim, Seong Cheon;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.528-534
    • /
    • 2006
  • The purpose of this paper is to investigate the optimal operating condition for the hydrogen production by biogas reforming using the plasmatron induced thermal plasma. The component ratio of biogas($CH_4/CO_2$) produced by anaerobic digestion reactor were 1.03, 1.28, 2.12, respectively. And the reforming experiment was performed. To improve hydrogen production and methane conversion rates, parametric screening studies were conducted, in which there are the variations of biogas flow ratio(biogas/TFR: total flow rate), vapor flow ratio($H_2O/TFR$: total flow rate) and input power. When the variations of biogas flow ratio, vapor flow ratio and input power were 0.32~0.37, 0.36~0.42, and 8 kW, respectively, the methance conversion reached its optimal operating condition, or 81.3~89.6%. Under the condition mentioned above, the wet basis concentrations of the synthetic gas were H2 27.11~40.23%, CO 14.31~18.61%. The hydrogen yield and the conversion rate of energy were 40.6~61%, 30.5~54.4%, respectively, the ratio of hydrogen to carbon monoxide($H_2/CO$) was 1.89~2.16.

Development of Intelligent System to Select Production Method in Coalbed Methane Reservoir (석탄층 메탄가스 저류층의 생산방법 선정을 위한 지능형 시스템 개발)

  • Kim, Chang-Jae;Kim, Jung-Gyun;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • To develop a coalbed methane(CBM) reservoir, it is important to apply production methods such as drilling, completion, and stimulation which coincide with coal properties. However, the reliability of the selected resulted in most of CBM field is not enough to accept because the selection of production method has been done by empirical decision. As the result, the empirical decision show inaccurate results and need to prove using simulation whether it was true exactly. In this study, the intelligent system has been developed to assist the selection of CBM production method using artificial neural network(ANN). Before the development of the system, technical screening guideline was analyzed by literature survey and the system to select drilling and completion method, and hydraulic fracture fluid was developed by utilizing the guideline. The result as a validation of the developed system showed a high accuracy. In conclusion, it has been confirmed that the developed system can be utilized as a effective tool to select production method in CBM reservoir.

The Effectiveness of New Power Generation and Energy Demand Reduction to Achieve Greenhouse Gas Reduction Goals in Building Area

  • Park, Seong-Cheol;Kim, Hwan-Yong;Song, Young-Hak
    • Architectural research
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2016
  • Since the massive power outages that hit across the nation in September 2011, a growing imbalance between energy supply and demand has led to a severe backup power shortage. To overcome the energy crisis which is annually repeated, a policy change for deriving energy supply from renewable energy sources and a demand reduction strategy has become essential. Buildings account for 18% of total energy consumption and have great potential for energy efficiency improvements; it is an area considered to be a highly effective target for reducing energy demand by improving buildings' energy efficiency. In this regard, retrofitting buildings to promoting environmental conservation and energy reduction through the reuse of existing buildings can be very effective and essential for reducing maintenance costs and increasing economic output through energy savings. In this study, we compared the energy reduction efficiency of national power energy consumption by unit production volume based on thermal power generation, renewable energy power generation, and initial and operating costs for a building retrofit. The unit production was found to be 13,181GWh/trillion won for bituminous coal-fired power generation, and 5,395GWh/trillion won for LNG power generation, implying that LNG power generation seemed to be disadvantageous in terms of unit production compared to bituminous coal-fired power generation, which was attributable to a difference in unit production price. The unit production from green retrofitting increased to 38,121GWh/trillion won due to the reduced energy consumption and benefits of greenhouse gas reduction costs. Renewable energy producing no greenhouse gas emissions during power generation and showed the highest unit production of 75,638GWh/trillion won, about 5.74 times more effective than bituminous coal-fired power generation.

Production of Solar Fuel by Plasma Oxidation Destruction-Carbon Material Gasification Conversion (플라즈마 산화분해-탄화물 가스화 전환에 의한 태양연료 생산)

  • Song, Hee Gaen;Chun, Young Nam
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.72-78
    • /
    • 2020
  • The use of fossil fuel and biogas production causes air pollution and climate change problems. Research endeavors continue to focus on converting methane and carbon dioxide, which are the major causes of climate change, into quality energy sources. In this study, a novel plasma-carbon converter was proposed to convert biogas into high quality gas, which is linked to photovoltaic and wind power and which poses a problem on generating electric power continuously. The characteristics of conversion and gas production were investigated to find a possibility for biogas conversion, involving parametric tests according to the change in the main influence variables, such as O2/C ratio, total gas feed rate, and CO2/CH4 ratio. A higher O2/C ratio gave higher conversions of methane and carbon dioxide. Total gas feed rate showed maximum conversion at a certain specified value. When CO2/CH4 feed ratio was decreased, both conversions increased. As a result, the production of solar fuel by plasma oxidation destruction-carbon material gasification conversion, which was newly suggested in this study, could be known as a possibly useful technology. When O2/C ratio was 0.8 and CO2/CH4 was 0.67 while the total gas supply was at 40 L min-1 (VHSV = 1.37), the maximum conversions of carbon dioxide and methane were achieved. The results gave the highest production for hydrogen and carbon dioxide which were high-quality fuel.

Effects of Applyng Two Different Chemical Additives to the Litter on Broiler Performance and the Carbon Dioxide Gas Production in Poultry Houses (깔짚에 두 가지의 다른 화학제제를 첨가하였을 때 육계의 생산성과 계사내의 이산화탄소 가스 발생에 미치는 영향)

  • Choi I. H.;Nahm K. H.
    • Korean Journal of Poultry Science
    • /
    • v.31 no.3
    • /
    • pp.171-176
    • /
    • 2004
  • The objectives of this study were to determine the effect of applying two different additives to the litter on broiler performance and the carbon dioxide gas production in poultry cages. In two different experiments, the carbon dioxide gas production in poultry litter used for 42 days was measured. The chemical additives were applied to the litter at a rate of 200 g aluminum chloride(A1Cl$_3$ㆍ6$H_2O$) or 200 g aluminum sulfate [Al$_2$(SO$_4$)$_3$ㆍ14$H_2O$, Alum] + 50 g carbon carbonate per kg litter. There was no effect on broiler performance by the litter additives, but the values of carbon dioxide gas produced from broiler litters which were treated with chemical additives were significantly lower(P < 0.05 and 0.01) than that of the control. This study showed that carbon dioxide gas production can be reduced by chemically treating the litter with A1Cl$_3$ or Alum + CaCO$_3$.

The Effects of Cadmium or Copper on Biological Hydrogen Production (생물학적 수소생산에 구리와 카드뮴이 미치는 영향에 관한 연구)

  • Yoon, Woo-Hyun;Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.958-964
    • /
    • 2005
  • Experiment was conducted to investigate the amount of hydrogen gas and the characteristics of organic acids production from various carbohydrates by anaerobic bacteria. The variation characteristics of organic acids and hydrogen gas production at the fermentative culture were also studied in the presence of heavy metals such as cadmium or lopper. 3.43 mole hydrogen per mole of hexose was produced when sucrose was used as a carbon source. Acetic acid and butyric acid were main products by the anaerobic fermentation. Hydrogen production rate was decreased and formation of acetic acid was increased as the concentration of heavy metals was increased in the medium. The inhibition of hydrogen production by the copper was more serious than the cadmium.

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.