• Title/Summary/Keyword: gas plant

Search Result 1,874, Processing Time 0.027 seconds

Utilizing the Idle Railway Sites: A Proposal for the Location of Solar Power Plants Using Cluster Analysis (철도 유휴부지 활용방안: 군집분석을 활용한 태양광발전 입지 제안)

  • Eunkyung Kang;Seonuk Yang;Jiyoon Kwon;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.79-105
    • /
    • 2023
  • Due to unprecedented extreme weather events such as global warming and climate change, many parts of the world suffer from severe pain, and economic losses are also snowballing. In order to address these problems, 'The Paris Agreement' was signed in 2016, and an intergovernmental consultative body was formed to keep the average temperature rise of the Earth below 1.5℃. Korea also declared 'Carbon Neutrality in 2050' to prevent climate catastrophe. In particular, it was found that the increase in temperature caused by greenhouse gas emissions hurts the environment and society as a whole, as well as the export-dependent economy of Korea. In addition, as the diversification of transportation types is accelerating, the change in means of choice is also increasing. As the development paradigm in the low-growth era changes to urban regeneration, interest in idle railway sites is rising due to reduced demand for routes, improvement of alignment, and relocation of urban railways. Meanwhile, it is possible to partially achieve the solar power generation goal of 'Renewable Energy 3020' by utilizing already developed but idle railway sites and take advantage of being free from environmental damage and resident acceptance issues surrounding the location; but the actual use and plan for these solar power facilities are still lacking. Therefore, in this study, using the big data provided by the Korea National Railway and the Renewable Energy Cloud Platform, we develop an algorithm to discover and analyze suitable idle sites where solar power generation facilities can be installed and identify potentially applicable areas considering conditions desired by users. By searching and deriving these idle but relevant sites, it is intended to devise a plan to save enormous costs for facilities or expansion in the early stages of development. This study uses various cluster analyses to develop an optimal algorithm that can derive solar power plant locations on idle railway sites and, as a result, suggests 202 'actively recommended areas.' These results would help decision-makers make rational decisions from the viewpoint of simultaneously considering the economy and the environment.

Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil (항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong;Jung, Jae-Woon;Yoon, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.853-860
    • /
    • 2012
  • To estimate potential use of fly ash in reducing $CH_4$ and $CO_2$ emission from soil, $CH_4$ and $CO_2$ fluxes from a paddy soil mixed with fly ash at different rate (w/w; 0, 5, and 10%) in the presence and absence of fertilizer N ($(NH_4)_2SO_4$) addition were investigated in a laboratory incubation for 60 days under changing water regime from wetting to drying via transition. The mean $CH_4$ flux during the entire incubation period ranged from 0.59 to $1.68mg\;CH_4\;m^{-2}day^{-1}$ with a lower rate in the soil treated with N fertilizer due to suppression of $CH_4$ production by $SO_4^{2-}$ that acts as an electron acceptor, leading to decreases in electron availability for methanogen. Fly ash application reduced $CH_4$ flux by 37.5 and 33.0% in soils without and with N addition, respectively, probably due to retardation of $CH_4$ diffusion through soil pores by addition of fine-textured fly ash. In addition, as fly ash has a potential for $CO_2$ removal via carbonation (formation of carbonate precipitates) that decreases $CO_2$ availability that is a substrate for $CO_2$ reduction reaction (one of $CH_4$ generation pathways) is likely to be another mechanisms of $CH_4$ flux reduction by fly ash. Meanwhile, the mean $CO_2$ flux during the entire incubation period was between 0.64 and $0.90g\;CO_2\;m^{-2}day^{-1}$, and that of N treated soil was lower than that without N addition. Because N addition is likely to increase soil respiration, it is not straightforward to explain the results. However, it may be possible that our experiment did not account for the substantial amount of $CO_2$ produced by heterotrophs that were activated by N addition in earlier period than the measurement was initiated. Fly ash application also lowered $CO_2$ flux by up to 20% in the soil mixed with fly ash at 10% through $CO_2$ removal by the carbonation. At the whole picture, fly ash application at 10% decreased global warming potential of emitted $CH_4$ and $CO_2$ by about 20%. Therefore, our results suggest that fly ash application can be a soil management practice to reduce green house gas emission from paddy soils. Further studies under field conditions with rice cultivation are necessary to verify our findings.

Translocation of Tolclofos-methyl from Ginseng Cultivated Soil to Ginseng (Panax ginseng C. A. Meyer) and Residue Analysis of Various Pesticides in Ginseng and Soil (토양 중 잔류된 Tolclofos-methyl의 인삼(Panax ginseng C. A. Meyer)에 대한 이행 및 잔류 특성)

  • Kim, Ji Yoon;Kim, Hea Na;Saravanan, Manoharan;Heo, Seong Jin;Jeong, Haet Nim;Kim, Jang Eok;Kim, Kwan Rae;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.3
    • /
    • pp.130-140
    • /
    • 2014
  • Recently, some of the previous studies reported that tolclofos-methyl is still exist in ginseng cultivated soil, even though it is has been banned for ginseng. Therefore, the current study was aimed to examine the levels of absorption and translocation of tolclofos-methyl from ginseng cultivated soil to ginseng root and leaf stem for the period of 1 year. For this study, ginseng plants were transplanted in pots and treated with $5.0mg\;kg^{-1}$ of tolclofos-methyl (50% WP). At the end of each interval periods (every three months) the samples (soil, roots and leaf stems) were collected and analyzed the absorption and translocation levels of tolclofos-methyl using gas chromatography and mass spectrometry (GC-MS). The limit of quantitation of tolclofos-methyl was found to be $0.02mg\;kg^{-1}$ and 70.0~120.0% recovery was obtained with coefficient of variation of less than 10% regardless of sample types. In this study, a considerable amount of translocation of tolclofos-methyl residues were found in soil (4.28 to $0.06mg\;kg^{-1}$), root (7.09 to $1.54mg\;kg^{-1}$) and leaf stem (0.79 to $0.69mg\;kg^{-1}$). The results show that the tolclofos-methyl was absorbted and translocated from ginseng cultivated soil to ginseng root and ginseng leaf stem and found to be decreased time-coursely. Secondly, we were also analyzed soil, root and leaf stems samples from Hongcheon, Cheorwon, Punggi and Geumsan by GC-MS/MS (172 pesticides), LC-MS/MS (74 pesticides). In this study, 43 different pesticides were detected ($0.01{\sim}7.56mg\;kg^{-1}$) in soil, root and leaf stem. Further, tolclofos-methyl was detected 4 times separately in root sample alone which is less ($0.01{\sim}0.05mg\;kg^{-1}$) than their maximum residual limit (MRL) in ginseng. Consequently, the results from both studies indicate the residues of tolclofos-methyl found in ginseng cultivated soil and ginseng ensuring their safety level. Moreover, long-term evaluations are needed in order to protect the soil as well as ginseng free from tolclofos-methyl residues.

The effects of aqueous extracts of plant roots on germination of seeds and growth of seedings (식물근의 추출물질이 종자발아 및 유식물의 생장에 미치는 영향)

  • Chan-Ho Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1968
  • This study aimed at contributing to the improvement of cropping systems after finding out the effects of excrements and components of crop root influence on other crops as well as themselves. The following forage crops suitable for our country were selected for the present study. Aqueous extracts of fresh roots, aqueous extracts of rotting roots and aqueous solutions of excrements of red clover, orchard grass and brome grass were studied for the effects influencing the germination and growth of seedlings of red clover, ladino clover, lespedeza, soybean, orchard grass, Italian ryegrass, brome grass, barley, wheat, sorghum, corn and Hog-millet. In view of the possibility that the organic acid might be closely related to the excrements and components of crop root connected with soil sickness, the acid components of three species of roots were analysed by paper chromatography and gas chromatography method. The following results were obtained: 1. Effects of Aqueous Extracts of Fresh Roots : Aqueous extracts of red clover: The extracts inhibited the growth of seedlings of the ladino clover and lespedeza and also inhibited the development of most crops except that of sorghum among the Graminaceae. Aqueous extracts of orchard grass: The extracts promoted the seedlings growth of red clover and soybean, while it inhibited the germination and growth of orchard grass. There were no noticeable effects influencing other crops while it inhibited the growth of barley and Hog-millet. Aqueous extracts of brome grass: There was no effect on Italian ryegrass but there was an inhibiting effect on the other crops. 2. Effects of Aqueous Extracts of Rotting Roots : Aqueous extracts of red clover: The extracts promoted the seedling growth of red clover. But it reflected the inhibiting effects on other crops except sorghum. Aqueous extracts of orchard grass: The extracts promoted the growth of red clover, ladino clover, soybean and sorghun, while it inhibited the germination and rooting of barley and Hog-millet. Aqueous extracts of brome grass: The extracts gave the promotive effects to the growth of red clover, soybean and sorghum, but caused inhibiting effects on orchard grass, brome grass, barley and Hog-millet. 3. Effects of Aqueous Solutions of Excrements : The aqueous solution of excrements of red clover reflected the inhibition effects to the growth of Graminaceae, while the aqueous solutions of excrements of orchard grass and Italian ryegrass caused the promotive effects on the growth of red clover. 4. Results of Organic Acid Analysis : The oxalic acid, citric acid, tartaric acid, malonic acid, malic acid and succinic acid were included in the roots of red clover as unvolatile organic acid, and in the orchard grass and brome grass there were included the oxalic acid, citric acid, tartaric acid and malic acid. And formic acid was confirmed in the red clover, orchard grass and brome grass as volatile organic acid. In consideration of the results mentioned in above the effects of excrements and components of roots found in this studies may be summarized as follows. 1) The red clover generally gave a disadvantageous effect on the Graminaceae. Such trend was considered chiefly caused by the presence of many organic acids, namely oxalic, citric, tartaric, malonic, malic, succinic and formic acid. 2) The orchard grass generally gave an advantageous effect on the Leguminosae. This may be due to a few kinds of organic acid contained in the root, namely oxalic, citric, tartaric, malic and formic acid. Furthermore a certain of promotive materials for growth was noted. 3) As long as the root of brome grass are not rotten, it gave a disadvantageous effect on the Leguminosae and Graminaceae. This may be due to the fact that several unidentified volatile organic acid were also included besides the confirmed organic acid, namely oxalic, citric, tartaric, malic and formic acid. 5. Effects of Components in Roots to the Soil Sickness : 1) It was considered that the cause of alleged red clover's soil sickness did not result from the toxic components of the roots. 2) It was recognized that the toxic components of roots might be the cause of soil sickness in case the orchard grass and brome grass were put into the long-term single cropping. 6. Effects of Rooted Components to the Companion Crops in the Cropping System : a) In case of aqueous extracts of fresh roots and aqueous excrements (Inter cropping and mixed cropping) : 1) Advantageous combinations : Orchard grass->Red clover, Soybean, Italian ryegrass->Red clover, 2) Disadvantageous combinations : Red clover->Ladino clover, Lespedeza, Orchard grass, Italian ryegrass, Fescue Ky-31, Brome grass, Barley, Wheat, Corn and Hog.millet, Orchard grass->Lespedeza, Orchard grass, Barley and Hog-millet, Brome grass->Red clover, Ladino clover, Lespedeza, Soybean, Orchard grass, Brome grass, Barley, Wheat, Sorghum, Corn and Hog-millet, 3) Harmless combinations : Red clover->Red clover, Soybean and Sorghum, Orchard grass->Ladino clover, Italian ryegrass, Brome grass, Wheat, Sorghum and Corn, Brome grass->Italian ryegrass, b) In case of aquecus extracts of rotting roots(After cropping) : 1) Advantageous combinations : Red clover->Red clover and Sorghum, Orchard grass->Red clover, Ladino clover, Soybean, Sorghum, and Corn, Brome grass->Red clover, Soybean and Sorghum, 2) Disadvantageous combinations : Red clover->Lespedeza, Orchard grass, Italian ryegrass, Brome grass, Barley, Wheat, and Hog-millet Orchard grass->Barley and Hog-millet, Brome grass->Orchard grass, Brome grass, Barley and Hog-millet, 3) Harmless combinations : Red clover->Ladino clover, Soybean and Corn, Orchard grass->Lespedeza, Orchard grass, Italian ryegrass, Brome grass and Wheat Brome gass->Ladino clover, Lespedeza, Italian ryegrass and Wheat.

  • PDF