• Title/Summary/Keyword: gas permeability analysis

Search Result 84, Processing Time 0.024 seconds

Simulation of Two-Phase Fluid Flow in a Single Fracture Surrounding an Underground LPG Storage Cavern: II. Verification of Numerical Model and Field Application (지하 LPG 저아공동에 인접한 단일절리에서의 이상유체거동해석: II. 수치모형의 검증 및 적용)

  • Han, Il-Yeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.449-458
    • /
    • 2001
  • In order to verify the numerical model, which was developed to simulate the behavior of the two-phase fluid flow in a single fracture, the characteristic equation of relative permeability was incorporated into the developed numerical model, and the computed results were compared with the experimental results of the model test. As results of the sensitivity analysis on the roughness and the aperture size of fracture, the gas velocity was inversely proportional to the fracture roughness, and not proportional to the square of aperture size which is usually observed in single phase flow in a single fracture. The numerical model was applied to the underground LPG storage terminal in order to check the field applicability. The simultaneous flow of water and gas in accordance with the operation pressures in a single fracture near cavern was simulated by the model. It was shown that the leaked gas was able to be controlled in a single fracture neither by the pressure of operation nor by that of groundwater in case the fracture became smoother in roughness and smaller in aperture size.

  • PDF

Studies on the Spatial Analysis for Distribution Estimation of Radon Concentration at the Seoul Area (서울지역 라돈농도의 분포예측을 위한 공간분석법 연구)

  • Baek, Seung-A;Lee, Tae-Jung;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.538-550
    • /
    • 2008
  • Radon is an invisible, odorless, and radioactive gas. It is formed by the disintegration of radium, which is a decay product of uranium. Some amounts of radon gas and its products are present ubiquitously in the soil, water, and air. Particularly high radon levels occur in regions of high uranium content. Although radon is permeable into indoor environment not only through geological features (bed rock and permeability) but also through the construction materials and underground water, the radiation from the geological features is generally main exposure factor. So there can be a problem in a certain space such as the underground and/or relatively poor ventilation condition. In this study, a GIS technique was used in order to investigate spatial distribution of radon measured from sub- way stations of 1 thru 8 in Seoul, Korea in 1991, 1998, 2001, and 2006. Spatial analysis was applied to reproduce the radon distribution. We utilized spatial analysis techniques such as inverse distance weighted averaging (IDW) and kriging techniques which are widely used to relate between different spatial points. To validate the results from the analyses, the jackknife technique for an uncertainty test was performed. When the number of measuring sites was less than 100 and also when the number of omitted sites increased, the kriging technique was better than IDW. On the other hand, when the number of sites was over 100, IDW technique was better than kriging technique. Thus the selection of analytical tool was affected sensitives by the analysis based on the number of measuring sites.

The Characteristics of Hydrogen Permeation through Pd-coated $Nb_{56}Ti_{23}Ni_{21}$ Alloy Membranes (Pd 코팅된 $Nb_{56}Ti_{23}Ni_{21}$ 합금 분리막의 수소투과 특성)

  • Jung, Yeong-Min;Jeon, Sung-Il;Park, Jung-Hoon
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • We make a studyof the hydrogen permeability and chemical stability of $Nb_{56}Ti_{23}Ni_{21}$ metal alloy membrane. For this purpose, we produced the $Nb_{56}Ti_{23}Ni_{21}$ membrane which has 10 mm diameter and 0.5 mm thick, and experiment the hydrogen transport properties under two kinds of feed gas ($H_2$ 100%; $H_2$ 60% + $CO_2$ 40%) at $450^{\circ}C$C with variation of absolute pressure.The maximum hydrogen permeation flux was $5.58mL/min/cm^2$ in the absolute pressure 3 bar under pure hydrogen. And each case of feed gases about gas composition, the permeation fluxes were satisfied with Sievert's law, and the hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of temperature and pressure. After permeation test, we experiment the stability and durability of $Nb_{56}Ti_{23}Ni_{21}$ alloy membrane for carbon dioxide by XRD analysis.

Analysis of Furnace Conditions with Waste Plastics Injection into Blast Furnace (폐플라스틱의 吹入에 따른 高爐 爐況解析)

  • 허남환;백찬영;임창희
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.23-30
    • /
    • 2000
  • Since most of the waste plastics are incinerated and landfilled for the plastic treatment, the environmental friendly processes must be introduced. The plastic utilization of plastic to the blast furnace as a substitutional fuel was developed as a useful recycling method of waste plastics, and commercialized in several ironmaking company in Europe and Japan. Present study was carried out to understand the effect of plastic injection on blast furnace process continuously by using the foundry blast furnace in POSCO. The coke replacement ratio turned out to be 0.98 with the waste plastic injection up to 13.8 kg/thm of injection rate, and there were no significant effect of the kinds of injection plastics on the replacement ratio in this test operation. The permeability in the furnace became worse and the heat load in the lower part of blast furnace was increased with increasing the injection rate of waste plastics. As the rate of plastic injection were increased, the top gas utilization and shaft efficiency were also decreased from the Rist diagram analysis.

  • PDF

Preliminary Simulation Analysis of the Large Scale Gas Injection Test (LASGIT) Experiment Using the OpenGeoSys (OGS) model

  • Park, Chan-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.5
    • /
    • pp.401-407
    • /
    • 2012
  • The OGS model is configured and used for simulation of the LASGIT project. The modeling conditions and the simulation results from the previous work by Walsh and Calder (2009) are analyzed to see if the simulation configuration is done correctly and to apply for the LASGIT project. Except for the unrealistic modeling conditions used previously, the simulation results successfully demonstrated helium propagation that is typical for the two-phase flow. The results indicated that the relations of capillary pressure and the relative permeability against water saturation used previously should be updated. An elaborated simulation with more realistic parameters should be used to improve the weak points of preliminary work.

A Study on the Measurement of Gas Discharge from the Gas Vent of Sanitary Landfill(1)- analysis for minimizing the measurement error of flow meter - (쓰레기 매립지 가스포집관에서 유출가스 계측에 관한 연구(1) -유량계 계측오차의 최소화를 위한 해석 -)

  • 이해승;이찬기
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.83-92
    • /
    • 1998
  • This study presents a relationship between gas quantity and measurement resistance using the bubble meter, the water head indicator and the rotor meter from the gas vent sanitary landfill. From the one-dimensional analyses and experiments, the below results have been obtained. The gas volume sourcing from the gas vent depends on the permeability of final cover soil, its cover depth and distance between the gas vents. The total gas volume producing in the interested domain may be accurately measured by the bubble meter, the water head indicator and the rotor meter if the clay is used for the final cover soil. The required times approaching to the steady-state are different with respect to the flow meters, one day is for the bubble meter and the water head indicator and one hour for the rotor meter.

  • PDF

Preparation and Characterization of PVA/PSSA-MA Electrolyte Membranes Containing Silica Compounds and Surface Fluorination for Fuel Cell Applications (연료전지 응용을 위한 실리카 성분을 함유하며 표면불소화된 PVA/PSSA-MA 막의 제조 및 특성 연구)

  • Kim, Dae-Hoon;Lee, Bo-Sung;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.540-546
    • /
    • 2010
  • In this manuscript, in order to reduce methanol permeability and, at the same time, to increase proton conductivity THS-PSA containing silica compound, responsible for methanol permeability reduction, and sulfonic acid, responsible for proton conductivity enhancement, was applied onto PVA/PSSA-MA membranes. And in order to improve durability, the resulting membranes, PVA/PSSAMA/THS-PSA, were exposed to 500ppm F2 gas at varying reaction times. The surface-fluorinated membranes were characterized through the measurement of contact angles, thermo-gravimetric analysis, and X-ray photoelectron spectroscopy to observe the physico-chemical changes. For the evaluation of the electro-chemical changes in the resulting membranes, its water contents, ion exchange capacity, proton conductivity, and methanol permeability were measured and then compared with the commercial membrane, Nafion 115. Finally, the membran electrode assembly(MEA) was prepared and the cell voltage against the current density was measured. As fluorination time increased, the contents of F2 increased up to maximum 4.3% and to depth of 50 nm. At 60 min of fluorination, the proton conductivity was 0.036 S/cm, larger than Nafion 115 at 0.024 S/cm, and the methanol permeability was $9.26E-08cm^2/s$, less than Nafion 115 at $1.17E-06cm^2/s$.

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

Analysis of Variables Influencing the Pressure Build-up and Volume Expansion of Kimchi Package (김치포장의 압력 및 부피 변화에 영향을 미치는 인자의 분석)

  • 이동선;최홍식;박완수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.429-437
    • /
    • 1999
  • A mathematical model was established for estimating changes in pressure and volume of permeable kimchi packages. The model comprises the CO2 gas production from kimchi and permeation of O2, CO2 and N2 through the permeable film or sheet. Using the developed model, the effects of various packaging variables on the pressure and volume changes were analyzed for rigid and flexible packag es of kimchi(3% salt content) at 15oC, and then effect of storage temperature was also looked into. In case of rigid pack of 400g, using the plastic sheet of high CO2 permeability and initial vacuumizing can help to relieve the problem of pressure build up. The lower fill weight can further reduce the pressure, but will result in higher packaging cost. For the flexible package of 3 kg, highly permeable films such as low density polyethylene(LDPE) and polypropylene can reduce the volume expansion. Higher ratio of CO2 permeability to O2 and N2 permeabilities are effective in reducing the volume expansion. Increased surface area cannot contribute to reduction of volume expansion for highly permeable flexible packages of kimchi. For the impermeable packages, pressure and volume at over ripening stage (acidity 1.0%) increase with decreased temperature, while those at optimum ripening stage(acidity 0.6%) change little with temperature. Pressure of permeable rigid LDPE package increases with tem perature at any ripening stage, and temperature affects the volume of flexible LDPE package very slightly. Experimental verification of the present results and package design with economical consid eration are needed as a next step for practical application.

  • PDF

Development of PEMFC Metallic Bipolar Plate for Automotive Driving (자동차 구동용 PEMFC 금속계 분리판 개발)

  • Lee, Jong-Chan;Kim, Ki-Jung;Yang, Yoo-Chang;Jeon, Yoo-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.89-92
    • /
    • 2007
  • The metallic bipolar plate in PEMFC is widely used for automotive driving because of its advantages, i) high strength, ii) high chemical stability, iii) low gas permeability and iv) applicability to mass production. Especially, the metallic bipolar plate which is manufactured with the sheet metal stamping process can be applied in automotive PEMFC with less volume and weight because of its thin thickness but the formability and springback problems arise in real manufacturing process. The assessment for formability and springback of metallic bipolar plate should be performed before making stamping die sets. In this work, the methodology for determining the allowable draft angle of flow passage is introduced by using finite element analysis. In analysis results, as the draft angle of flow passage increase, the major strain and thinning is increase with exponential function. The allowable draft angle without fracture is presented by fitting the results. Additionally, the staking results with manufactured metallic bipolar plates by stamping process is presented.

  • PDF