• Title/Summary/Keyword: gas permeability

Search Result 534, Processing Time 0.039 seconds

Experimental Study on Gas-Water Fracture Relative Permeability Measurement in a Single-Fractured Parallel Plate Model (단일 균열 평판 모델에서 가스-물 균열 상대투과도 측정에 관한 실험적 연구)

  • 이원석;성원모;한일영
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.221-226
    • /
    • 2000
  • In this study, the characteristics of gas-water relative permeability curves in a single fractured-plate according to the various aperture size were analyzed by using the Hele-Shaw type glass plate model. The plate was made of glasses for the observation of the two-phase flow pattern, and seven cases were set up based on the aperture size in the range of field scale from 30 to $120\mum$. The experiment was conducted by steady-state method, and the water saturation was determined more accurately by the developed digital image process technique. The empirical equations of relative permeability to gas and water for single fractured-plate were correlated by using the aperture size which directly affects the two-phase flow pattern and critical saturation.

  • PDF

Anti-corrosion Properties of SiOxCy(-H) thin Films Synthesized and Oxidized by Atmospheric Pressure Dielectric Barrier Discharge (대기압 유전체배리어방전으로 합성 및 산화 처리된 SiOxCy(-H) 박막의 부식방지 특성)

  • Kim, Gi-Taek;Kim, Yoon Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.201-206
    • /
    • 2020
  • A SiOxCy(-H) thin film was synthesized by atmospheric pressure dielectric barrier discharge(APDBD), and a SiO2-like layer was formed on the surface of the film by oxidation treatment using oxygen plasma. Hexamethylcyclotrisiloxane was used as a precursor for the SiOxCy(-H) synthesis, and He gas was used for stabilizing APDBD. Oxygen permeability was evaluated by forming an oxidized SiOxCy(-H) thin film on a PET film. When the single-layer oxidized SiOxCy(-H) film was coated on the PET, the oxygen gas permeability decreased by 46% compared with bare PET. In case of three-layer oxidized SiOxCy(-H) film, the oxygen gas permeability decreased by 73%. The oxygen permeability was affected by the thickness of the SiO2-like layer formed by oxidation treatment rather than the thickness of the SiOxCy(-H) film. The excellent corrosion resistance was demonstrated by coating an oxidized SiOxCy(-H) thin film on the silver-coated aluminum PCB for light emitting diode (LED).

Effects of the Pore Size of Graphite on the Mechanical Properties and Permeability of a Porous Nozzle for Continuous Casting Process

  • Cho, Yong-Ho;Kim, Juyoung;Yoon, Sanghyeon;Lee, Heesoo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.530-534
    • /
    • 2011
  • To analyze the effect of the pore size of graphite in a pore-forming agent, graphite was added to porous ceramics of $Al_2O_3-SiO_2-ZrO_2$ systems. The graphite had 45~75, 100~125, 150~180, and 75~180${\mu}m$ dimensions. The properties of the ceramics, such as apparent porosity, density, dynamic elastic modulus, mechanical strength, and permeability, were investigated. The average pore size increased from 15.35${\mu}m$ to 22.32${\mu}m$ with the increase of the graphite size. The sample with the largest average pore size showed the highest mechanical strength and gas permeability. This was due to the sample with the largest pore size at the same porosity having fewer pores and larger distance between the pores than the sample with the smallest pore size, making cracks less likely to propagate. In addition, the large pore size reduced the repulsive power originating from the drag force between the gas and internal pore walls.

Effect of Heat Treatment on the Gas Permeability, Sound Absorption Coefficient, and Sound Transmission Loss of Paulownia tomentosa Wood (참오동나무의 열처리가 기체투과성, 흡음율과 음향투과손실에 미치는 영향)

  • KANG, Chun-Won;JANG, Eun-Suk;JANG, Sang-Sik;Cho, Jae-Ik;KIM, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.644-654
    • /
    • 2019
  • In this study, the gas permeability, sound absorption coefficient, and sound transmission loss of the Paulownia tomentosa wood were estimated using capillary flow porometry, transfer function method, and transfer matrix method, respectively. The longitudinal specific permeability constant of the Paulownia tomentosa wood with a thickness of 20 mm was 0.254 for the control sample and 0.279, 0.314, and 0.452 after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$, respectively. The gas permeability was observed to be slightly increased by the heat treatment. The mean sound absorption coefficients of 20-mm thick Paulownia tomentosa log cross-section for the control sample and after being subjected to heat treatments at $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.101, 0.109, 0.096 and 0.106, respectively. Further, the noise reduction coefficients of 20-mm thick Paulownia tomentosa log cross-section of the control sample and after being subjected to heat treatment at temperatures of $100^{\circ}C$, $160^{\circ}C$, and $200^{\circ}C$ were 0.060, 0.067, 0.062 and 0.071, respectively. The mean of sound transmission loss of the 20-mm thick Paulownia tomentosa log cross-section was approximately 36.93 dB. Furthermore, the gas permeability and sound absorption coefficient of the heat-treated Paulownia tomentosa discs slightly increased depending on the heat treatment temperature; however, the rate of increase was insignificant.

Gas Permeation Study of Fuel Hose Composed as Inner Material of FKM Rubber (FKM 고무를 내층재료로 한 연료호스의 가스 투과성 연구)

  • Kim, Do-Hyun;Doh, Kyung-Hwan;Park, Hyun-Ho;Lee, Chang-Seop
    • Elastomers and Composites
    • /
    • v.40 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • To develop an automotive fuel hose suitable to the international environmental regulation, FKM rubber materials as an inner material of fuel hole were prepared with different chemical compositions. Measurement of the properties of thermal resistance, oil resistance, fuel resistance, gas permeability including fundamental properties were performed to investigate compatibility for a fuel hose material. Fundamental properties, thermal resistance, oil resistance, fuel resistance and permeability of FKM rubber materials were improved with fluorine content. When the carbon content was 20 phr, FKM compounds with fluorine contents of 66%, 09% and 71% were shown to satisfy the specification oi fuel hose. The gas permeability of NBR and FKM compounds was measured on the mixed fuel oils prepared with isooctane-toluene and gasoline-methanol. FKM rubber materials showed a small difference in penetrated amount of fuel and showed a permeability superior to NBR material. he permeability of FKM rubber materials was not influenced by the contents of fuel oil. Thermal properties of 69% FKM rubber experienced by permeability testing were not variated.

Development of Production Performance Forecasting Model Considering Pressure Dependent Permeability at Coalbed Methane Reservoir (석탄층 메탄가스전에서 압력 의존 투과도를 고려한 생산거동 예측 모델 개발)

  • Kim, Sangho;Kwon, Sunil
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.7-19
    • /
    • 2019
  • In this study, a model was developed for estimating deliverability considering the pressure dependent permeability and predicting production profile with Material Balance Equation(MBE) for Coalbed Methane(CBM) fields. The estimated deliverability was compared with the conventional deliverability based on CBM well testing data with coefficient of determination($R^2$). As a result, the former was 0.76 and the latter was 0.69. It was confirmed that the deliverability which consider the pressure dependent permeability is more adoptable when representing the productivity of CBM fields. Through this process, in order to calculate pressure dependent permeability when well testing data exist, a method to infer reservoir pressure within the radius of investigation was proposed. The production profile of 31 gas wells was predicted for 15 years, using the estimated deliverability and the MBE. After that, the results was compared with simulation results of the literature. The simulation results did not account the pressure dependent permeability and the developed model results considered that. As the applied field permeability rised 1.17 times, field production rate was increased approximately 15% than the literature results. According to other researches, the permeability of CBM fields can be rise 6 ~ 25 times. For these cases, the production profiles may have significant difference with conventional gas fields.

Fabrication of Gas-permeable Die Materials Having Orthogonally Arrayed Pore Channels

  • Chan, Tien-Yin;Lin, Shun-Tian;Chang, Hua-Jun;Chen, Chia-Liang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.97-98
    • /
    • 2006
  • Gas-permeable metal die materials are developed using tool steel powder, packed in a mold having the insertion of orthogonally arrayed polymer wires. Linear gas-permeable channels in orthogonal array are thus developed by the burning out of the polymer wires, which yield a microstructure with wear resistance value and air permeability much larger than those of the conventional gas-permeable die material.

  • PDF

Water Repellent Coating of Carbon Cloth with Different Size PTFE and Gas Permeabilities (PTFE 크기 변화에 따른 Carbon Cloth 발수 코팅과 가스 투과도 변화)

  • Jeon, Hyeon;Cho, Tae-Hwan;Choi, Weon-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.313-320
    • /
    • 2010
  • Carbon cloth was impregnated into PTFE emulsion. PTFE is a fluoropolymer used as a coating material in various fields due to its hydrophobicity and excellent mechanical properties. In this study, PTFE emulsion was prepared different particle size of 5~500 nm and $3{\sim}5{\mu}m$. FE-SEM and FT-IR spectroscopy were used microscopic observation and investigation of chemical structure change after PTFE coating. Mass variations, gas permeability and water contact angles were analyzed to determine a GDL performance of PTFE coated carbon cloth. PTFE coated carbon cloth show different mass increase according as PTFE concentration and the number of coating times. Water contact angle of PTFE coated carbon cloth was not effected by size of PTFE particle and the number of coating time; meanwhile, gas permeability was rapidly changed at carbon cloth coated by emulsion with size of $3{\sim}5{\mu}m$ PTFE particle.

Cure Characteristics, Physical Properties and Ozone Resistance of Butyl Rubber and EPDM Rubber Blends (Butyl고무와 EPDM고무 블렌드의 경화특성, 물리적 성질 및 내오존성)

  • Park, Chan-Young;Hwang, Young-Bea
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.329-334
    • /
    • 2011
  • In general, butyl rubber(IIR : isobutylene isoprene rubber) has excellent gas permeability resistance and impact absorbance property as low resilience elastomer. In this experiment butyl rubber blends with EPDM(ethylene propylene diene monomer) were prepared by mechanical mixing method. Curing behavior, physical properties and ozone resistance etc. were subsequently examined. Measurement results of gas transmission rate test shows that butyl rubber contents above 50 wt% showed significant decrease in gas permeability resistant property. However, in butyl rubber/EPDM blend, EPDM contents above 25 wt% indicates no surface change due to improvement of ozone resistance under the condition of 50 pphm, $50^{\circ}C$, 120 hrs.