• Title/Summary/Keyword: gas measurement method

Search Result 643, Processing Time 0.036 seconds

Properties of AZO thin film prepared on polymer substrate (폴리머 기판 상에 제작한 AZO 박막의 특성)

  • Cho, Bum-Jin;Keum, Min-Jong;Kim, Kyung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1500-1501
    • /
    • 2006
  • Because AZO thin film has the potential applications, Preparing AZO thin films on the polymer substrate has been widely studied. In this study, we prepared AZO thin films on polyethersulfon (PES) at room temperature. The AZO thin films were prepared at $O_2$ gas flow rate of 0.05 and sputtering power of 100W with different film thickness by facing targets sputtering method. The electrical, optical and crystallographic properties of AZO thin films were measured by Hall effect measurement system, UV/VIS spectrometer, SEM and XRD. From the results, we obtained AZO thin films with a low resistivity, a transmittance of over 80% and c-axis preferred orientation.

  • PDF

A Study on Silencer Performance Assessment under Onboard Condition (선내 탑재된 소음기 성능평가 방법에 관한 연구)

  • Lee, Do-Kyung;Jin, Bong-Man;Lee, Cheul-Won;Kim, Nho-Sung;Choi, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.731-736
    • /
    • 2004
  • The exhaust noise of auxiliary engine in ships is directly transmitted to bridge wing with only distance attenuation. It is not easy to find out practical treatment to be applied between exhaust pipe and bridge wing to reduce the transmission of the exhaust noise. In general, therefore, a silencer is fitted to reduce the exhaust noise and correspondingly noise of bridge wing. The silencer should be properly designed under the consideration of the frequency component of the exhaust noise and the required performance such as noise reduction or insertion loss. In general, the gas inside the exhaust pipe flows with high temperature and speed and thus onboard test condition is more adverse than the standard atmospheric condition. In this study, the test method to evaluate silencer performance using a probe microphone is introduced.

  • PDF

The study on the measurement of formaldehyde in saliva and urine by GC-MS (가스크로마토그래프-질량분석기에 의한 타액 및 뇨 중 포름알데하이드 분석법 연구)

  • Shin, Ho-Sang;Ahn, Hye-Sil
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.149-154
    • /
    • 2006
  • A gas chromatography-mass spectrometric method was developed for the determination of formaldehyde in urine and saliva. In a 20 mL glass tube, 0.2 mL of urine or saliva was taken. Further, 1.8 mL of 0.1 M HCl, 0.1 mL of 2,000 mg/L 2,4-dinitrophenyl hydrazine and $20{\mu}l$ of 500 mg/L acetone-$d_6$ as internal standard were added in the tube and sealed tightly with cap. The solution was shaken for 20 min at room temperature and extracted using 4 mL of toluene. The extract was concentrated and redissolved with $100{\mu}l$ of acetonitrile, and then measured by gas chromatography-mass spectrometer (selected ion monitoring). The detection limit was 2.0 ng/mL and 0.5 ng/mL in saliva and urine, respectively. The calibration curves showed good linearity with r = 0.997 and 0.998 for saliva and urine, respectively. The method was used to analyze formaldehyde in rat urine after oral exposure. The developed method may be use ful to the monitoring for formaldehyde exposure in human.

Development of Primary Standard Gas Mixtures for Monitoring Monoterpenes (α-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) Ambient Levels (at 2 nmol/mol) (대기 중 모노테르펜 (α-피넨, 3-카렌, R-리모넨, 1,8-시네올) 측정을 위한 혼합표준가스개발)

  • Kang, Ji Hwan;Kim, Mi Eon;Kim, Young Doo;Rhee, Young Woo;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.3
    • /
    • pp.320-328
    • /
    • 2016
  • Among biogenic volatile organic compounds (BVOCs) in the natural ecosystem, monoterpenes, along with isoprene, play important roles in atmospheric chemistry and make significant impacts on air pollution and climate change, especially due to their contribution to secondary organic aerosol production and photochemical ozone formation. It is essential to measure monoterpene concentrations accurately for understanding their oxidation processes, emission processes and estimation, and interactions between biosphere and atmosphere. Thus, traceable calibration standards are crucial for the accurate measurement of monoterpenes at ambient levels. However, there are limited information about developing calibrations standards for monoterpenes in pressured cylinders. This study describes about developing primary standard gas mixtures (PSMs) for monoterpenes at about 2 nmol/mol, near ambient levels. The micro-gravimetric method was applied to prepare monoterpene (${\alpha}$-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) PSMs at $10{\mu}mol/mol$ and then the PSMs were further diluted to 2 nmol/mol level. To select an optimal cylinder for the development of monoterpene PSMs, three different kinds of cylinders were used for the preparation and were evaluated for uncertainty sources including long-term stability. Results showed that aluminum cylinders with a special internal surface treatment (Experis) had little adsorption loss on the cylinder internal surface and good long-term stability compared to two other cylinder types with no treatment and a special treatment (Aculife). Results from uncertainty estimation suggested that monoterpene PSMs can be prepared in pressured cylinders with a special treatment (Experis) at 2 nmol/mol level with an uncertainty of less than 4%.

Development of Calorific Values and Carbon Emission Factors for Petroleum Energy in Korea from 2012 to 2013 (2012~2013년 국내 석유계 에너지원의 열량 및 탄소배출계수 개발)

  • Lim, Wan-Gyu;Doe, Jin-Woo;Kang, Hyung-Kyu;Ha, Jong-Han;Lee, Sang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • Country-specific data for net calorific values and carbon emission factors requires for a higher tier estimate of greenhouse gas emissions in the energy sector. The objective of this study is to develop country-specific net calorific values and carbon emission factors for petroleum energy produced in Korea. Calorific values and carbon contents of the fuels were measured using the oxygen bomb calorimeter method and the CHN elemental analysis method, respectively. Sulfur and hydrogen contents, which were used to calculate the net calorific value, were also measured and then net calorific values and carbon emission factors were determined based on the measurement results. The net calorific values and carbon emission factors determined for the petroleum produced in Korea 2012 and 2013 were compared to those in the 2006 IPCC Guidelines. Most of the values were different compared with the default values of the 2006 IPCC Guidelines although those were placed within their upper and lower limits. Time series analysis results showed inconsistent seasonal variation for the net calorific values and carbon emission factors.

PEMFC Characterization Study by in-situ Analysis Method (In-Situ 분석법에 의한 연료전지 특성 연구)

  • Kim, Young-Min;Lee, Jong-Hyun;Im, Se-Joon;Ahn, Byung-Ki;Lim, Tae-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.3
    • /
    • pp.208-215
    • /
    • 2009
  • PEMFC stack power output is needed to be around 100 kW to meet the requirements of automotive application and scaling-up the active area of the stack cells will allow a higher power. In the case of scaling-up the active area of cells, it is difficult to obtain uniform in-plane internal conditions such as temperature, relative humidity and stoichiometry of the feed gas. These ununiformity with the location in the cell would affect both the performance and durability of the stack, so it is important to understand phenomena in the cell for improving them. In this study, the current density, electrochemical resistance and performance distribution measurement was performed to understand the ununiformity in a single cell using in-situ method; (1) Current Density Distribution (CDD) Device and (2) Segmented Cell Fixture. The influence of location of feed gas on the performance of a single cell was experimentally measured and discussed by using a segmented single cell which was composed of 8 compartments. The correlation between the location and performance in a single cell was discussed by these two tools and it was extended between the local characterization and the durability in a MEA by comparing the used cell with a fresh one. It was also studied in terms of electrochemistry by Electrochemical Impedance Spectroscopy.

Development of Certified Reference Materials for Specific Surface Area (비표면적 인증표준물질 개발)

  • Choi, Byung Il;Kim, Jong Chul;Kim, Taeyoung;Nham, Hyunsoo;Kwon, Su Yong
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.74-84
    • /
    • 2005
  • Understandings of adsorption characteristic of interface are very important in several advanced materials processes, related to NT and BT technology. Volumetric gas adsorption method, suitable for absolute measurements, is regarded as the standardized measurement technique for specific surface area. In order to verify the reliability of commercial equipments, certified reference materials (called CRM) of specific surface area are developed and evaluated its uncertainty factors by standard equipment which has traceability to SI units. Specific surface areas of developed materials are $10.72{\pm}0.46m^2g^{-1}$ for silicon nitride powders and $149.50{\pm}3.44m^2g^{-1}$ for alumina. These disseminations of CRMs would result in improved reliability chains in industrial processes, and lead eventually to contribution to productivity improvement, quality management, safety evaluation, and possibly to new material development.

Measurement of the Greenhouse Gas Emission Benefits from the Marine Bio-Energy Development Project (해양바이오에너지 개발사업의 온실가스 저감편익 추정)

  • Kim, Tae-Young;Pyo, Hee-Dong;Kim, Hye-Min;Park, Se-Hun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • It is time to develop new renewable energy that could fundamentally replace fossil fuel, which has been increasingly needed due to environmental pollution and energy security. Korean marine bio-energy development project is planned to produce 50% of total bioenergy. This study attempts to measure the greenhouse gas emission reduction benefits of marine bio-energy development project through contingent valuation method. Single bounded dichotomous choice (SBDC) is applied with spike model. The results show that the average willingness to pay are estimated to be KRW 4,190 at SBDC, per household per year. If the result has been expanded to the region which is survey conducted, KRW 50.1 billion annually. These quantitative information can be usefully utilized in the cost benefit analysis to implement project and policy-making for the industrialization of marine bio-energy development project.

Development of Calibration System of Helium Permeation Type Standard Leaks (헬륨 투과형 표준리크 교정장치 개발)

  • Hong S.S.;Lim I.T.;Shin Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.347-353
    • /
    • 2006
  • A helium permeation type standard leak calibration system has newly developed by using dynamic gas expansion method. The measurement range was extended lower to $10^{-6}$ Pa L/s for participating CCM (Consultative Committee for Mass and Related Quantities) standard leak key comparison. For the system, pressure ratios of high and ultra-high vacuum chamber and porous plug conductance for helium gas were determined. By using the system, a permeation type standard leak of $5.6{\times}10^{-4}$ Pa L/s range was calibrated. The calibration result showed that the difference between standard commercial leak was 11.1 %.

A Study on CO2 Sensor Module Using NDIR Method (비분산 적외선 방식의 CO2 센서 모듈에 관한 연구)

  • Kim, Gyu-Sik;Oh, Joon-Tae;Kim, Hie-Sik;Kim, Jo-Chun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.36-40
    • /
    • 2009
  • In this paper we discuss about the practical implementation of a combined CO and CO2 dual sensor module that is adapted by NDIR (Non-Dispersive Infrared) method that measures the absorbance of gas like CO and CO2 by using gas particles' characteristics that absorb specific wave lengths of infrared ray. NDIR has a long life time, excellent measurement and precision compared to the existing contact types or chemical types of CO2 sensors. Since optical cavity technology that had been developed until now can measure CO2 only we research and develop an optimal optical cavity design and density-temperature calibration technologies that can measure CO and CO2 at the same time and is important to decide the performance of the sensor module according to well-designed wave guides of the different length.