• Title/Summary/Keyword: gas measurement method

Search Result 643, Processing Time 0.03 seconds

UHF Narrow Band Type Partial Discharge Diagnosis Method for the Internal Insulation Performance Verification of the Gas Insulated Switchgear (가스절연 개폐장치의 내부절연 성능검증을 위한 UHF 협대역 부분방전 진단법)

  • Song Won-Pyo;Kim Jung-Bae;Kim Min-So;Jung Jae-Ryong;Park Seung-Jae;Ko Heui-Suk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.414-420
    • /
    • 2005
  • A method for partial discharge diagnosis based on UHF narrow band type for GIS has been developed and calibrated. In generally, PD cannot be directly measured under on-line condition, but we can indirectly measure the electromagnetic wave made by PD using the high-frequency antenna. Compared with VHF band, electromagnetic waves of UHF band have a low influence for external noise in high-voltage substation. Therefore, we can detect the real abnormality with several pC in GIS using UHF narrow-band type method. For the case of no internal VHF sensor for GIS of the domestic substation, it has applied to use the external UHF sensor attached in spacer in GIS of existing substation. In this paper, we firstly described the technique of partial discharge measurement using frequency analysis and phase analysis in UHF band. Secondly, we presented the results of sensitivity test, the relationship of dBm-pC and diagnosis result of the cause of PD source by phase analysis. And then, we report the diagnosis result of partial discharge on the real GIS in domestic substation. These results make above method applicable for measurement of quantity and cause of PD for real operation GIS in high-voltage substation.

236U accelerator mass spectrometry with a time-of-flight and energy detection system

  • Li Zheng;Hiroyuki Matsuzaki;Takeyasu Yamagata
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4636-4643
    • /
    • 2022
  • A time-of-flight and energy (TOF-E) detection system for the measurement of 236U accelerator mass spectrometry (AMS) has been developed to improve the 236U/238U sensitivity at Micro Analysis Laboratory, Tandem accelerator (MALT), The University of Tokyo. With observing TOF distribution of 235U, 236U and 238U, this TOF-E detection system has clearly separated 236U from the interference of 235U and 238U when measuring three kinds of uranium standards. In addition, we have developed a novel method combining kernel-based density estimation method and multi-Gaussian fitting method to estimate the 236U/238U sensitivity of the TOF-E detection system. Using this new estimation method, 3.4 × 10-12 of 236U/238U sensitivity and 1.9 ns of time resolution are obtained. 236U/238U sensitivity of TOF-E detection system has improved two orders of magnitude better than that of previous gas ionization chamber. Moreover, unknown species other than uranium isotopes were also observed in the measurement of a surface soil sample, which has demonstrated that TOF-E detection system has a higher sensitivity in particle identification. With its high sensibility in mass determination, this TOF-E detection system could also be used in other heavy isotope AMS.

Uncertainty-based Decision on Mitigation of Nitrous Oxide Emissions in Upland Soil (불확도 기반 밭토양 아산화질소 배출 저감 여부 판정)

  • Ju, Okjung;Kang, Namgoo;Lim, Gapjune
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.307-316
    • /
    • 2019
  • In the agricultural sector, greenhouse gas emissions vary depending on the interaction of all ecosystem changes such as soil environment, weather environment, crop growth, and anthropogenic farming activities. Agricultural sector greenhouse gas emissions resulting from many of these interactions are highly variable. Uncertainty-based evaluation that defines the interval with confidence level of greenhouse gas emission and absorption is necessary to take account of the variance characteristics of individual emissions, but research on uncertainty evaluation method is insufficient. This study aims to decide on the effect of reducing N2O emissions from upland soils using an uncertainty-based approach. An uncertainty-based approach confirmed whether there was a difference between confidence intervals in the 5 different fertilizer treatment groups to reduce greenhouse gas emissions. Unlike the statistically significant test with three repetition averages, the uncertainty-based approach method estimated in this study is able to estimate the confidence interval considering the distribution characteristics of the emissions, such as the dispersion characteristics of individual emissions. Therefore, it is considered that the reliability of emissions can be improved by statistically testing the variance characteristics of emissions such as the uncertainty-based approach. It is hoped that the direction of the uncertainty-based approach for the effect of reducing greenhouse gas emissions in agriculture will be helpful in the future development of agricultural greenhouse gas emission reduction technology, adaptation to climate change, and further development of sustainable eco-social system.

Prepration of Hydoxy Polyimde Membranes and Their Carbon Dioxide Permeation Property (Hydroxy Polyimide 막의 제조와 이산화탄소 투과 특성)

  • Woo, Seung-Moon;Choi, Jong-Jin;Nam, Sang-Yong
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.128-134
    • /
    • 2012
  • In this study, hydroxy polyimide (HPI) was prepared for non-porous membrane by solvent evaporation method. As the result of gas permeance properties measurement, $CO_2$ permeability was 85 Barrer and the $CO_2/N_2$ selectivity was 23 at $30^{\circ}C$. Flat sheet membrane and hollow fiber membrane were prepared by using ternary system of polymer, solvent and non-solvent additive. Morphologies and gas permeance properties were measured by FE-SEM and bubble flow meter. Each $CO_2$ permeability of 18.28 GPU, 70 GPU and $CO_2/N_2$ selectivity of 6.72, 8.63 at $30^{\circ}C$ in the flat sheet membrane and hollow fiber membrane. Hollow fiber membrane has gas permeance property better than flat sheet membrane.

Characteristics of Bovine Teeth Whitening in Accordance with Gas Environments of Atmospheric Pressure Nonthermal Plasma Jet

  • Sim, Geon Bo;Kim, Yong Hee;Kwon, Jae Sung;Park, Daehoon;Hong, Seok Jun;Kim, Young Seok;Lee, Jae Lyun;Lee, Gwang Jin;Lim, Hwan Uk;Kim, Kyung Nam;Jung, Gye Dong;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.250.2-250.2
    • /
    • 2014
  • Currently, teeth whitening method which is applicable to dental surgery is that physician expertises give medical treatment to teeth directly dealed with a high concentration of hydrogen peroxide and carbamide peroxide. If hydrogen peroxide concentration is too high for treatment of maximized teeth whitening effect [1], it is harmful to the human body [2]. To the maximum effective and no harmful teeth whitening effect in a short period of time at home, we have observed the whitening effect using carbamide peroxide (15%) and a low-temperature atmospheric pressure plasma jet which is regulated by the Food and Drug Administration. The gas supplied conditions of the non-thermal atmospheric pressure plasma jet was with the humidified (0.6%) gas in nitrogen or air at gas flow rate of 1000 sccm. Also, the measurement of chemical species from the jet was carried out using the optical emission spectroscopy (OES), the evidence of increased reactive oxygen species compared to non-humidified plasma jet. We have found that the whitening effect of the plasma is very excellent through this experiment, when bovine teeth are treated in carbamide peroxide (15%) and water vapor (0.2 to 1%). The brightness of whitening teeth was increased up to 2 times longer in the CIE chromaticity coordinates. The colorimetric spectrometer (CM-3500d) can measure color degree of whitening effect.

  • PDF

Fabrication of $SnO_2$ Gas Sensor added by Metal Oxide for DMMP (DMMP 검출용 금속산화물을 첨가한 $SnO_2$ 가스센서 제조)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.54-61
    • /
    • 2003
  • $SnO_2$ gas sensor for the detection DMMP, simulant of nerve gas was fabricated and its characteristics were examined. Sensing materials were $SnO_2$ added by TEX>$\alpha$-$Al_{2}O_{3}$ with 0∼20wt.% and $In_{2}O_{3}$ with 0∼3wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Its dimension was 7$\times$10$\times$0.6$\textrm{mm}^2$. Crystallite size 8t phase identification, specific surface area and morphology of fabricated $SnO_2$ powders were analyzed by X-ray diffraction(XRD), surface area analyzer(BET) and by a scanning electron microscope(SEM), respectively. Sensor was measured as flow type and sensor resistance change was monitored as real time using LabVIEW program. The best sensitivities were 75% at adding 4wt.% TEX>$\alpha$-$Al_{2}O_{3}$, operating temperature $300^{\circ}C$ and 87% at adding 2wt.% $In_{2}O_{3}$, operating temperature $350^{\circ}C$ to DMMP 0.5ppm. Response and recovery times were about 1 and 3 min., respectively. Repetition measurement was very good with $\pm$3% in full scale. As a result, operating temperature was lower TEX>$\alpha$-$Al_{2}O_{3}$ than $In_{2}O_{3}$, but sensitivity was higher $In_{2}O_{3}$ than $\alpha$-$Al_{2}O_{3}$.

Effect Oxygen in Inflation Gas for Warm Ischemia-reperfusion Injury in the Lung of a Mongrel Dog (황견에서 폐장의 산소가 온열 허혈후 재관류 시폐손상에 미치는 영향)

  • 성숙환;김현조;김영태
    • Journal of Chest Surgery
    • /
    • v.33 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • Background: Hyperinflation during lung ischemia has been known to improve pulmonary functions after reperfusion which may be exerted through a pulmonary vasodilation and avoidance of atelectasis by an increased surfactant release and been known whether the improvement of pulmonary function was the effect of hyperinflation itself or the oxygen content in inflation gas. Therefore we attempted to clarify the effect of hyperinflation with oxygen in pulmonary inflation gas during warm ischemia on pulmonary function after reperfusion to solve the problem of ischemia-reperfusion injury after lung transplantation. Material and Method: sixteen mongrel dogs were randomly divided into two groups: the left lung was inflated to 30-35 cm H2O with 100% oxygen in oxygen group and 100% nitrogen in nitrogen group. The inflated left lung was maintained with warm ischemia for 100 minutes. Arterial and mixed venous blood gas analysis and hemodynamics were measured before ischemia and 30, 60, 120, 180 and 240 minutes afer reperfusion. Lung biopsy was taken for the measurement of lung water content after the end of reperfusion. Result: In oxygen group arterial oxygen tension the difference of arterial and mixed venous oxygen tension and the difference of alveolar-arterial oxygen tension at 30-minute after reperfusion were not significantly different from those before ischemia and were stable during the 40hour reperfusion. However in nitrogen group these values were significantly deteriorated at 30-minute after reperfusion. there was no significant difference between two groups in hemodynamic data peak airway pressure and lung water content. Conclusion : The results indicated that the oxygenation one of the most important pulmonary functions was improved by pulmonary inflation with 100% oxygen during warm ischemia but the hemodynamics were not. Oxygen as a metabolic substrate during warm ischenia was believed to make the pulmonary tissues to maintain aerobic metabolism and to prevent ischemic damage of alveoli and pulmonary capillary.

  • PDF

Characterization and Preparation of PEG-Polyimide Copolymer Asymmetric Flat Sheet Membranes for Carbon Dioxide Separation (이산화탄소 분리를 위한 폴리에틸렌글리콜계 폴리이미드 공중합체 비대칭 평판형 분리막의 제조 및 기체 투과 특성평가)

  • Park, Jeong Ho;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2015
  • In this study, we synthesized polyimide with high carbon dioxide gas transport property using 2,2-bis(3,4-carboxylphenyl) hexafluoropropane, 2,3,5,6-tetramethyl-1,4-phenylenediamine and poly(ethylene glycol) bis(3-aminopropyl) terminated and then we calculated solubility parameter of synthesized polymer and non-solvent phase separation coefficient to determine proper solvent for preparation of asymmetric membrane, also we measured the viscosity of the polymer solution to check polymer contents in membrane solution and prepare asymmetric membrane with $LiNO_3$ additives. The morphology and gas separation property of membrane prepared by phase separation method was confirmed using Field Emission Scanning Electron Microsope and the single gas permeation measurement apparatus. We confirmed that the carbon dioxide permeance of the membrane increased and the selectivity showed little change with decreasing of the volatile solvent contents.

Efficient Management of the pH of the Wet Scrubber Washing Water for Risk Mitigation (리스크 완화를 위한 Wet Scrubber 세정수 pH의 효율적 관리)

  • Joo, Dong-Yeon;Seoe, Jae Min;Kim, Myung-Chul;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.85-92
    • /
    • 2020
  • Wet Scrubber reacts the incoming pollutant gas with cleaning water (water + absorbent) to absorb pollutants and release the clean air to the atmosphere. Wet scrubbers and packed tower scrubbers using this principle are widely used in businesses that emit acid gases. In particular, in the etching process using hydrochloric acid (HCl), alkaline washing water (NaOH) having a pH of about 8 to 11 is used to absorb a large amount of acid gas. However, These salts are attached to the injection nozzle (nozzle), filling material (packing), and the demister (Demister), causing air pollution, human damage, and inoperability due to clogging and acid gas discharge. Therefore, In this study, an improvement plan was proposed to manage the washing water with pH 3~4 acidic washing water. The test method takes samples from the Wet Scrubber flue measurement laboratory twice a month for 1 year. Hydrogen chloride (HCl) concentration (ppm) was measured, and nozzle clogging and scale conditions were measured, compared, and analyzed through a differential pressure gauge and a pressure gauge. As a result of the check, it was visually confirmed that the scale was reduced to 50% or less in the spray nozzle, filler, and demister. In addition, the emission limit of hydrogen chloride in accordance with the Enforcement Regulation of the Air Quality Conservation Act [Annex 8] met 3 ppm or less. Therefore, even if the washing water is operated in an acidic pH range of 3 to 4, it is expected to reduce air pollution and human damage due to clogging of internal parts, and it is expected to reduce maintenance costs such as regular cleaning or replacement of parts.

Evaluation of sensitivity of soil respiration to temperature in different forest types and developmental stages of maturity using the incubation method

  • Lee, Eun-Hye;Suh, Sang-Uk;Lee, Chang-Seok;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • To calculate and predict soil carbon budget and cycle, it is important to understand the complex interrelationships involved in soil respiration rate (Rs). We attempted to reveal relationships between Rs and key environmental factors, such as soil temperature, using a laboratory incubation method. Soil samples were collected from mature deciduous (MD), mature coniferous (MC), immature deciduous (ID), and immature coniferous (IC) forests. Prior to measure, soils were pre-incubated for 3 days at $25^{\circ}C$ and 60% of maximum water holding capacity (WHC). Samples of gasses were collected with 0, 2, and 4 h interval after the beginning of the measurement at soil temperatures of 5, 15, 25, and $35^{\circ}C$ (at 60% WHC). Air samples were collected using a syringe attached to the cap of closed bottles that contained the soil samples. The $CO_2$ concentration of each gas sample was measured by gas chromatography. Rs was strongly correlated with soil temperature (r, 0.93 to 0.96; P < 0.001). For MD, MC, ID, and IC soils taken from 0-5 cm below the surface, exponential functions explained 90%, 82%, 92%, and 86% of the respective data plots. The temperature and Rs data for soil taken from 5-10 cm beneath the surface at MD, MC, ID, and IC sites also closely fit exponential functions, with 83%, 95%, 87%, and 89% of the data points, respectively, fitting an exponential curve. The soil organic content in mature forests was significantly higher than in soils from immature forests (P < 0.001 at 0-5 cm and P < 0.005 at 5-10 cm) and surface layer (P = 0.04 at 0-5 cm and P = 0.12). High soil organic matter content is clearly associated with high Rs, especially in the surface layer. We determined that the incubation method used in this study have the possibility for comprehending complex characteristic of Rs.