• Title/Summary/Keyword: gas mask

Search Result 121, Processing Time 0.027 seconds

The Influence of $O_2$ Gas on the Etch Characteristics of FePt Thin Films in $CH_4/O_2/Ar$ gas

  • Lee, Il-Hoon;Lee, Tea-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.408-408
    • /
    • 2012
  • It is well known that magnetic random access memory (MRAM) is nonvolatile memory devices using ferromagnetic materials. MRAM has the merits such as fast access time, unlimited read/write endurance and nonvolatility. Although DRAM has many advantages containing high storage density, fast access time and low power consumption, it becomes volatile when the power is turned off. Owing to the attractive advantages of MRAM, MRAM is being spotlighted as an alternative device in the future. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal- oxide semiconductor (CMOS). MTJ stacks are composed of various magnetic materials. FePt thin films are used as a pinned layer of MTJ stack. Up to date, an inductively coupled plasma reactive ion etching (ICPRIE) method of MTJ stacks showed better results in terms of etch rate and etch profile than any other methods such as ion milling, chemical assisted ion etching (CAIE), reactive ion etching (RIE). In order to improve etch profiles without redepositon, a better etching process of MTJ stack needs to be developed by using different etch gases and etch parameters. In this research, influences of $O_2$ gas on the etching characteristics of FePt thin films were investigated. FePt thin films were etched using ICPRIE in $CH_4/O_2/Ar$ gas mix. The etch rate and the etch selectivity were investigated in various $O_2$ concentrations. The etch profiles were studied in varying etch parameters such as coil rf power, dc-bias voltage, and gas pressure. TiN was employed as a hard mask. For observation etch profiles, field emission scanning electron microscopy (FESEM) was used.

  • PDF

Development of Wireless Real-Time Gas Detector System for Chemical Protection Performance Test of Personal Protective Equipment (화생방 보호의 성능평가를 위한 무선 실시간 가스 검출기 개발)

  • Kah, Dong-Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.294-301
    • /
    • 2020
  • Man-In-Simulant Test(MIST) provides a test method to evaluate chemical protective equipments such as protective garments, gloves, footwear and gas mask. The MIST chamber is built to control concentration of chemical vapor that has a activity space for two persons. Non-toxic methyl-salicylate(MeS) is used to simulate chemical agent vapor. We carried out to measure inward leakage MeS vapors by using passive adsorbent dosimeter(PAD) which are placed on the skin at specific locations of the body while man is activity according to the standard procedure in MIST chamber. But more time is required for PADs and there is concern of contamination in PADs by recovering after experiment. Therefore detector for measuring in real time is necessary. In order to analyze in real time the contamination of the personal protective equipment inside the chemical environment, we have developed a wireless real-time gas detector. The detector consists of 8 gas-sensors and 1 control-board. The control-board includes a CPU for processing a signal, a power supply unit for biasing the sensor and Bluetooth-chipset for transmission of signals to external PC. All signals from gas-sensors are converted into digital signals simultaneously in the control-board. These digital signals are stored in external PC via Bluetooth wireless communication. The experiment is performed by using protective equipment worn on manikin. The detector is mounted inside protective equipment which is capable of providing a real-time monitoring inward leakage MeS vapor. Developed detector is demonstrated the feasibility as real-time detector for MIST.

Analysis of the Eyeglasses Supply System for Ametropes in ROK Military (한국군 비정시자용 안경의 보급체계 분석)

  • Jin, Yong-Gab;Koo, Bon-Yeop;Lee, Woo-Chul;Yoon, Moon-Soo;Park, Jin-Tae;Lee, Hang-Seok;Lee, Kyo-Eun;Leem, Hyun-Sung;Jang, Jae-Young;Mah, Ki-Choong
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.579-588
    • /
    • 2018
  • Purpose : To analyze the eyeglasses supply system for ametropic soldiers in ROK military. Methods : We investigated and analyzed the supply system of eyeglasses for the ametropic soldiers provided by the Korean military. The refractive powers and corrected visual acuity were measured for 37 ametropic soldiers who wear insert glasses for ballistic protective and gas-masks supplied by the military based on their habitual prescriptions. Full correction of refractive error was prescribed for subjects having less than 1.0 of distance visual acuity, and comparison was held for inspecting the changes in corrected visual acuity. Suggestions were provided for solving the issues regarding current supplying system, and this study investigated the applicabilities for utilizing professional optometric manpower. Results : The new glasses supplied by army for ametropic soldiers were duplicated from the glasses they worn when entering the army. The spherical equivalent refractive powers of the conventional, ballistic protective and gas-mask insert glasses supplied for 37 ametropic soldiers were $-3.47{\pm}1.69D$, $-3.52{\pm}1.66D$ and $-3.55{\pm}1.63D$, respectively, and the spherical equivalent refractive power of full corrected glasses was $-3.79{\pm}1.66D$, which showed a significant difference(p<0.05). The distant corrected visual acuity measured at high and low contrast(logMAR) of conventional, ballistic protective and gas-mask insert glasses were $0.06{\pm}0.80$, $0.21{\pm}0.82$, $0.15{\pm}0.74$, $0.34{\pm}0.89$, $0.10{\pm}0.70$ and $0.22{\pm}0.27$, respectively, while the corrected visual acuity by full corrected glasses were increased to $0.02{\pm}1.05$, $0.10{\pm}0.07$, $0.09{\pm}0.92$, $0.26{\pm}0.10$, $0.04{\pm}1.00$ and $0.19{\pm}1.00$, respectively. There was a significant difference(p<0.05) except for the case of the low contrast corrected visual acuity of the conventional and gas-mask insert glasses. The procedure for ordering, dispensing, and supplying military glasses consists of 5 steps, and it was found that approximately two weeks or more are required to supply from the initial examination. Conclusion : The procedure of supplying the military glasses showed three issues: 1) a lack of refraction for prescription system, 2) relatively long length of time required for supplying the glasses, 3) an inaccurate power of supplied glasses. In order to solve those issues, in the short term, education is necessarily required for soldiers on the measurement of the refractive powers, and in the near future, further standard procedures for prescription of glasses as well as the securement of optometric manpower are expected.

Effect of Deposition Parameters on the Properties of TiN Thin Films Deposited by rf Magnetron Sputtering (rf 마그네트론 스퍼링에 의하여 증착된 TiN 박막의 물성에 대한 증착변수의 영향)

  • Lee, Do Young;Chung, Chee Won
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.676-680
    • /
    • 2008
  • TiN thin films were deposited on a $SiO_2(2000{\AA})/Si$ substrate by radio-frequency(rf) magnetron sputtering. TiN films were prepared under varying $N_2$ concentration in $N_2/Ar$ gas mix, rf power and gas pressure, and investigated in terms of deposition rate, resistivity and surface morphology. As $N_2$ concentration increased, the deposition rate and the surface roughness of the films decreased and the resistivity increased. With increasing rf power, the deposition rate increased but the resistivity was decreased. As gas pressure increased, little change in deposition rate was obtained but the resistivity rapidly increased. TiN film with resistivity of $2.46{\times}10^{-4}{\Omega}cm$ at 1 mTorr was formed. It was observed that there existed a correlation between the deposition rate and resistivity. In particular, the gas pressure has a strong influence on the resistivity of thin films.

Dry Etching of Al2O3 Thin Film by Cl2/Ar Plasma (Cl2/Ar 플라즈마를 이용한 Al2O3 박막의 식각)

  • Yang, Xue;Um, Doo-Seung;Kim, Gwan-Ha;Song, Sang-Hun;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1005-1008
    • /
    • 2009
  • In this study, adaptively coupled plasma (ACP) source was used for dry etching of $Al_2O_3$ thin film. During the etching process, the wafer surface temperature is an important parameter to influent the etching characteristics. Therefore, the experiments were carried out in ACP to measuring the etch rate, the selectivities of $Al_2O_3$ thin film to mask materials and the etch profile as functions of $Cl_2$/Ar gas ratio and substrate temperature. The highest etch rate of $Al_2O_3$ was 65.4 nm/min at 75% of $Cl_2/(Cl_2+Ar)$ gas mixing ratio. The etched profile was characterized using field effect scanning electron microscopy (FE-SEM). The chemical states of $Al_2O_3$ thin film surfaces were investigated with x-ray photoelectron spectroscopy (XPS).

Computer Simulation of Mo/Si Thin Film Characteristics for EUVL Technology (EUVL 응용을 위한 Mo/Si 박막 특성 전산모사)

  • Lee, Young-Tae;Chung, Yong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.807-811
    • /
    • 2002
  • In this work, we investigated the deposition behavior of Mo/Si multilayer thin film structures simulated by a PVD process simulator based on Monte Carlo method to assist the optimized fabrication of the high quality mask in EUVL(Extreme Ultra-Violet Lithography) process. The shape of simulated thin film structures turned out to be largely dependent on the gas pressure(1∼30 mTorr), the target-substrate distance(1∼30 cm) and the diffusion length(1∼10 nm). From the simulation studies, it was predicted that relatively uniform thin film structures can be fabricated by decreasing gas pressure and increasing the target-substrate distance.

Study on the Etching Characteristics of $0.2\mu\textrm{m}$ fine Pattern of Ta Thin film for Next Generation Lithography Mask (차세대 노광공정용 Ta박막의 $0.2\mu\textrm{m}$ 미세패턴 식각특성 연구)

  • Woo, Sang-Gyun;Kim, Sang-Hoon;Ju, Sup-Youl;Ahn, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.819-824
    • /
    • 2000
  • In this research, the etching characteristics of Ta thin film with chlorine plsama have been studied by Electron Cyclotron Resonance (ECR) plasma etching system. The effects of microwave power, RF bias power, working pressure and gas chemistry on the etching profiles have been investigated. The microloading effect, which was observed at fine pattern formation, was effectively suppressed by double step etching, and anisotropic $0.2{\mu\textrm{m}}$ L&S patterns were successfully generated.

  • PDF

Optimization for Fused Quartz DRIE using Taguchi Method (다구치 방법을 이용한 비정질 수정 건식 식각 최적화)

  • Song, Eun-Seok;Jung, Hyung-Kyun;Hwang, Young-Seok;Hyun, Ik-Jae;Kim, Yong-Kwon;Beak, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.129-130
    • /
    • 2008
  • In this paper, optimal DRIE process conditions for fused quartz are experimentally determined by Taguchi method to develop high-performance inertial sensors based on the fused quartz material, which is known to have high Q-factors. Using Si layer as an etch mask, which was formed by previously developed bonding process of the fused quartz and Si wafer, fused quartz DRIE process was performed. Different 9 flow rate conditions of $C_4F_8$, $O_2$, He gas have been tested and the optimum combination of these factors was estimated. By this work, the ability to fabricate high aspect ratio fused quartz structure was confirmed.

  • PDF

Photocatalyst Applied Light Transparent Exposed Concrete Block and Mold Development (광촉매 활용 광투과 노출콘크리트 블록 및 거푸집 개발)

  • Seo, Seung-Hoon;Kang, Young-Un;Jeon, Seung-Heon;Kwon, Shi-Won;Kim, Byoung-Il
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.16-17
    • /
    • 2018
  • A few years ago, the rapid degradation of domestic air quality has led to the efforts of exhaust gas policy and fine dust mask, but it is not a fundamental measure. In Korea, photocatalyst will be applied to residential and multi-use facilites to purify indoor and outdoor air. Also, in this study, it is tried to produce exposed concrete that is aesthetically pleasing as well as air purification of indoor by combining with light transparent concrete according to the increasing interest in human indoor living environment. For this purpose, we have developed a block formwork for photocatalysis light transparent concrete and established a suitable manufacturing method for on-site construction.

  • PDF

Fabrication of low-stress silicon nitride film for application to biochemical sensor array

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.357-361
    • /
    • 2005
  • Low-stress silicon nitride (LSN) thin films with embedded metal line have been developed as free standing structures to keep microspheres in proper locations and localized heat source for application to a chip-based sensor array for the simultaneous and near-real-time detection of multiple analytes in solution. The LSN film has been utilized as a structural material as well as a hard mask layer for wet anisotropic etching of silicon. The LSN was deposited by LPCVD (Low Pressure Chemical Vapor Deposition) process by varing the ratio of source gas flows. The residual stress of the LSN film was measured by laser curvature method. The residual stress of the LSN film is 6 times lower than that of the stoichiometric silicon nitride film. The test results showed that not only the LSN film but also the stack of LSN layers with embedded metal line could stand without notable deflection.