• Title/Summary/Keyword: gas lift

Search Result 128, Processing Time 0.024 seconds

Effect of Nifedipine on the Ampicillin Absorption (니페디핀이 암피실린의 흡수에 미치는 영향)

  • Jeong, Hyun-Jeong;Yong, Chul-Soon;Choi, Yoon-Soo;Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.57-64
    • /
    • 1997
  • $Amino-{\beta}-lactam$ antibiotics are absorbed by the dipeptide transporter in the small intestine. These uptakes are coupled to a proton influx. The inward proton gradient is partly induced by the $Na^+/H^+$ exchanger and calcium ion is involved in control of this antiport. Interaction between ampicillin which is one of the $Amino-{\beta}-lactam$ antibiotics and nifedipine which is one of calcium channel blocking agents was studied in rats in vivo and with rabbit jejunum mounted on the Sweetana/Grass diffusion cells in vitro. Bioavailability of ampicillin was increased significantly when nifedipine was co-administered orally in rats. There were no differences in the distribution phase and the elimination phase when ampicillin was given either alone or with nifedipine intravenously. Conditions for in vitro experiments were determined. The lift rate of $O_2/CO_2$ gas was controlled to 3 bubbles/sec and ampicillin was stable in the Kreb's buffer at pH 6.0. Absorption of ampicillin was the greatest when the completely-stripped serosal membrane was used. Transport of ampicillin from mucosal to serosal side in the rabbit jejunum was enhanced by 32% in the presence of nifedipine (p=0.059). Above results suggest that nifedipine might increase the plasma level of ampicillin via the improved absorption in the intestine rather than the reduction in the elimination or/and alteration in the distribution.

  • PDF

Study on Flow Characteristics and Discharge Coefficient of Safety Valve for LNG/LNG-FPSO Ships (LNG / LNG-FPSO 선박용 안전밸브의 유동특성 및 유출계수에 관한 연구)

  • Kim, Sung-Jin;Jung, Sung-Yuen;Kim, Dang-Ju;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.487-494
    • /
    • 2011
  • The safety valve used in LNG/LNG-FPSO ships plays an important role in maintaining a fixed level of pressure by emitting LNG gas out of the pipes in the LNG piping system. The discharge coefficient is regarded as the most important factor in the valve performance. To satisfy the ship's classification, the discharge coefficient of the safety valve must usually be over 0.8. Despite the importance of understanding the flow phenomena inside the safety valve, the valve design is usually based on experience and experiments. We carried out a computational fluid dynamics (CFD) investigation using the ANSYS-CFX software. We observed the flow phenomena inside the valve and measured the discharge coefficients according to changes in the valve lift, which is the distance between the exit of the nozzle and the lower part of the disc plate. We verified our CFD results for the discharge coefficients using available experimental data.

Experimental Study of Performance and Bubble Pattern of Air-Lift Pumps with Various Tube Diameters and Submergence Ratios (공기부양 펌프의 관직경과 잠수비 변화에 따른 기포 형상과 성능에 관한 실험적 연구)

  • Kim, Seung Hwan;Sohn, Chae Hoon;Hwang, Jun Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.837-845
    • /
    • 2013
  • An airlift pump can be used to pump liquids and sediments within itself, which cannot easily be pumped up by a conventional method, by using the airlift effect. This characteristic of the airlift pump can be exploited in a DCFC (Direct Carbon Fuel Cell) so that molten fuel with high temperature may be carried or transported. The basic characteristics of airlift are investigated. A simple system is constructed, where the reservoir is filled with water, a tube is inserted, and air is supplied from the bottom of the tube. Then, water is lifted and its flow rate is measured. Bubble patterns in the tube are observed in a range of air flow rates with the parameters of the tube diameter and submergence ratio, leading to four distinct regimes. The pumping performance is predicted, and the correlation between the supplied gas flow rate and the induced flow rate of water is found.

A Study on Fire Risk of Apartment House with Pilotis Structure - Focused on the Fire case of Uijeongbu-si Urban Livig Homes - (필로티 구조의 공동주택 화재 위험성 연구 - 의정부 대봉그린 도시형아파트 화재 사례를 중심으로 -)

  • Choi, Seung-Bok;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.48-54
    • /
    • 2016
  • Pilotis are support columns that lift a building above the ground. Thus, they can elevate the lowest floor to the secondfloor level and, in Korea, are used to leav a parking area below multifamily housing. However, if there is a fire in the piloti area, the cars and main entrance door are wrapped in flames. Due to the inflammability of the materials, the combustion of the cars and insulation at the ceiling of the pilotis, having a high heat release rate, can quickly destroy the front entrance of the building and spread heat, flames and a poisonous gas to the stairs and elevator pit. Therefore, the fire can quickly spread to the whole building, putting the lives of the residents in danger. This study was an in-depth accidental case study of the "Uijeongbu Fire Accident" that killed 5 residents and injured 139 others. The study identified the relationships between the fire at the piloti structure of multifamily housing and the vulnerability of this structure and its inherent weaknesses.

Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve (DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구)

  • Oh, Byoung-Gl;Lee, Min-Kwang;Park, Yeong-Seop;Lee, Kang-Yoon;SunWoo, Myoung-Ho;Nam, Ki-Hoon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

A study on the highly sensitive metal nanowire sensor for detecting hydrogen (수소감지를 위한 고감도의 금속 나노선 센서에 관한 연구)

  • An, Ho-Myoung;Seo, Young-Ho;Yang, Won-Jae;Kim, Byungcheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2197-2202
    • /
    • 2014
  • In this paper, we report on an investigation of highly sensitive sensing performance of a hydrogen sensor composed of palladium (Pd) nanowires. The Pd nanowires have been grown by electrodeposition into nanochannels and liberated from the anodic aluminum oxide (AAO) template by dissolving in an aqueous solution of NaOH. A combination of photo-lithography, electron beam lithography and a lift-off process has been utilized to fabricate the sensor using the Pd nanowire. The hydrogen concentrations for 2% and 0.1% were obtained from the sensitivities (${\Delta}R/R$) for 1.92% and 0.18%, respectively. The resistance of the Pd nanowires depends on absorption and desorption of hydrogen. Therefore, we expect that the Pd nanowires can be applicable for detecting highly sensitive hydrogen gas at room temperature.

Numerical studies on flow-induced motions of a semi-submersible with three circular columns

  • Tian, Chenling;Liu, Mingyue;Xiao, Longfei;Lu, Haining;Wang, Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.599-616
    • /
    • 2021
  • The semi-submersible with three circular columns is an original concept of efficient multifunctional platform, which can be used for marginal oil, gas field, and Floater of Wind Turbines (FOWT). However, under certain flow conditions, especially in uniform current with specific velocities, the eddies will alternatively form and drop behind columns, resulting in the fluctuating lift force and drag force. Consequently, the semi-submersible will subject to the Flow-Induced Motions (FIM). Based on the Detached Eddy Simulation (DES) method, the numerical studies were carried out to understand the FIM characteristics of the three-column semi-submersible at two different parameters, i.e., current incidences (0°, 30°, and 60°-incidences) and reduced velocities (4 ≤ Ur ≤ 14). The results indicate that the lock-in range of 6 ≤ Ur ≤ 10 for the transverse motions is presented, and the largest transverse non-dimensional nominal amplitude is observed at 60°-incidence, with a value of Ay/D = 0:481. The largest yaw amplitude Ayaw is around 3.0° at 0°-incidence in the range of 8 ≤ Ur ≤ 12. The motion magnitude is basically the same as that of a four-column semi-submersible. However, smaller responses are presented compared to those of the three-column systems revealing the mitigation effect of the pontoon on FIM.

Numerical Study on the Effect of the Arrangement Type of Rotor Sail on Lift Formation (로터세일의 배열 형태가 양력 형성에 미치는 영향에 관한 수치해석적 연구)

  • Jung-Eun Kim;Dae-Hwan Cho;Chang-Yong Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • Recently, the international community, including the International Maritime Organization (IMO), has strengthened regulations on air pollution emissions of ships, and eco-friendly ships are actively being developed to reduce exhaust gas emissions. Among them, rotor sail (RS), a wind-assisted ship propulsion system, is attracting attention again. RS is a cylindrical device installed on the ship deck, that generates hydrodynamic lift using a magnus effect. This is a next generation eco-friendly auxiliary propulsion technology, and Enercon company, which developed RS-applied ships, announced that fuel savings of more than 30% are possible. In this study, optimal installation conditions such as RS spacing and arrangement type were selected when multiple RSs were installed on ships. AR=5.1, SR=1.0, and De/D was fixed at 2.0 according to the RS arrangement, and the wind direction was considered only for the unidirectional +y-axis. Regarding arrangement conditions, five conditions were set at 3D intervals in the +x-axis direction from 3D to 15D and five conditions in the +y-axis direction from 5D to 25D. CL, CD and aerodynamic efficiency (CL/CD) were compared according to the square(□) and diamond(◇) shape arrangements. Consequently, the effect of RS on the longitudinal distance was not significantly different. However, in the case of RS flow characteristics according to the transverse distance, the interaction effect of RS was the greatest when the two RSs almost matched the wind direction. In the case of the RS flow characteristics according to the arrangement, notably, when the wind blew in the forward (0°) direction, the diamond (◇) arrangement was least affected by the backward flow between RSs.