• Title, Summary, Keyword: gas hydrate

Search Result 327, Processing Time 0.043 seconds

Estimation of gas-hydrate concentrations from amplitude variation with offset (AVO) analysis of gas-hydrate BSRs in the Ulleung Basin, East Sea (동해 울릉분지 해저 모방 반사면의 AVO 분석을 통한 가스하이드레이트 농도 예측)

  • Yi, Bo-Yeon;Lee, Gwang-Hoon;Ryu, Byong-Jae;Yoo, Dong-Geun;Chung, Bu-Heung;Kang, Nyeon-Keon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.676-679
    • /
    • 2009
  • The bottom-simulating reflector (BSR) is the most commonly observed seismic indicator of gas hydrate in the Ulleung Basin, East Sea. We processed ten representative seismic reflection profiles, selected from a large data set, for amplitude variation with offset (AVO) analysis of the BSR to estimate gas-hydrate concentrations. First, BSRs were divided into five groups based on their seismic amplitudes and associated sediment types: (1) very high-amplitude BSRs in turbidite/hemipelagic sediments, (2) high-amplitude BSRs in debris-flow deposits, (3) moderate-amplitude BSRs in turbidite/hemipelagic sediments, (4) very low-amplitude BSRs in debris-flow deposits, and (5) very low-amplitude BSRs in seismic chimneys. The AVO responses of the group 1 and 3 BSRs are characterized by a rapid decrease and a relatively slow decrease in magnitude with offset, respectively. The AVO response of the group 2 BSR is characterized by a relatively slow increase in magnitude with offset. The AVO responses of the groups 4 and 5 BSRs are characterized by a flat AVO with very small zero-offset amplitude. Theoretical AVO curves, based on the three-phase Biot theory, suggest that the group 1 and 3 BSRs may be related to high (> 40%) concentrations of gas hydrate whereas the group 2 BSRs may indicate low (< 20%) concentrations of gas hydrate. The AVO responses of the group 4 and 5 BSRs cannot be compared with the theoretical models because of their very small zero-offset amplitudes. The comparison of the AVO response of the BSR at the UBGH-04 well with theoretical models suggests about 10% gas-hydrate concentration above the gas-hydrate stability zone.

  • PDF

Nozzle effect on the formation of Methane hydrate

  • Seo, Hyang-Min;Park, Sung-Seek;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.226-229
    • /
    • 2008
  • When methane hydrate is artificially formed to store and transport large quantity of natural gas, its reaction time may be too long and the gas consumption in water becomes relatively low, the reaction rate between water and methane gas is low. Therefore, the present investigation focuses on the rapid production of hydrates and increases the gas consumption by injecting water into methane gas utilizing nozzle. the hydrate in water injection using a nozzle formed rapidly more than that in gas injection, and the gas consumption of methane hydrate in water injection is about three to four times greater than that in gas injection according to subcooling.

  • PDF

Nozzle Effect for the Formation Enhancement of Methane Hydrate (메탄 하이드레이트 생성촉진을 위한 노즐 분사효과 연구)

  • Kim, Nam-Jin;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.8-14
    • /
    • 2008
  • Methane hydrate is crystalline ice-like compounds which consist of methane gas of 99% and over, and the estimated amount of gas contained in hydrates is about 1 trillion carbon Ton. Therefore, they have the potential for being a significant source for natural gas, and 1$m^3$ solid hydrates contain up to 172N$m^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, the tests were performed on the formation of methane hydrate by a nozzle. The result showed that utilizing nozzles dramatically reduces the time in hydrate formation, the pressure after the injection is decreased to be approximately 90% of experimental pressurethe, and gas consumption is higher about 3 times than that of subcooling test.

An Investigation on the Technical Progress of Test Production for Gas Hydrate Development (가스하이드레이트 시험생산 기술개발 동향)

  • Park, Seoung-Soo;Ju, Woo-Sung;An, Seung-Hee;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.705-708
    • /
    • 2009
  • For the Gas hydrate Research and Development in Korea, the prospect area I & II was surveyed and drilled during the first phase. At the result, we succeeded to discovering gas hydrate real sample at BSR reflection and vent structure. This expedition processing contributes to developing the offshore seismic survey technologies and data processing of Korea. But Korean gas hydrate test production research, in spite of activating test production at other countries, is such a limitation about technician, GH production technologies and E&P processing. First of all, there is no exist in Korea to application site for the their production research results. In this paper, we have studied the gas hydrate reservoir selection technics of the DOE & BPXA for the ANS test production. And this result will helpful to preparation of gas hydrate test production in Korea.

  • PDF

Gas Hydrate Systems at Hydrate Ridge;Results from ODP Leg 204

  • Lee, Young-Joo;Kim, Ji-Hoon;Ryu, Byong-Jae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.531-533
    • /
    • 2007
  • We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 meters below the seafloor (mbsf)) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2-2.5 km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor vertical gas migration from greater depth (e.g., Site 1244).

  • PDF

Experimental device for studying natural GH-bearing specimens (GH 함유 자연시료 실험 연구 셀 제작 및 활용사례)

  • Lee, Joo-Yong;Lee, Jae-Hyung;Lee, Min-Hui
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.703-704
    • /
    • 2009
  • Natural gas Hydrate is an ice-like crystal containing natural gas it. Natural gas hydrate is studied as a new energy resource and a factor for seafloor slope stability and global warming. The unique pressure and temperature stability conditions of natural gas hydrate have challenged the research efforts. In this study, a new tool to study hydrate-bearing sediments and the preliminary results are introduced. The device can sustain 20MPa of the fluid pressure and apply 5MPa of the vertical effective stress under the temperature control. Cell can be scanned by X-ray CT scanner and also has the capability of multi-sensor data acquisition. Preliminary results suggests various application of the cell to hydrate-bearing research.

  • PDF

An Experimental Investigation on Effects of Gas Hydrate Formation Factors For NGH Transport Technology Development (NGH 수송기술 개발을 위한 주요 인자별 제조특성 실험 연구)

  • Kim, You-Na;Shin, Chang-Hoon;Han, Jeong-Min;Shin, Kwang-Sik;Kim, Byoung-Joo;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.511-514
    • /
    • 2007
  • Gas hydrate has a unique property that can store a large volume of gas in water as a solid form. Even though investigations for natural gas storage technology have been carried out for several decades, there are still a lot of unsolved problems due to complex formation process, low formation speed, high energy consumption and so on. So, lots of experiments were conducted to overcome these weaknesses and to develop artificial NGH formation technology applicable to industrial-scale storage and commercial transport. In this study, some series of experiments were performed to analyze both stirred and unstirred system especially about the influences of several gas hydrate formation factors such as agitation speed, system temperature, SDS concentration, etc. As a result, optimum range of SDS concentration and temperature that could enhance the storage capacity and shorten the formation time were found. And it is obviously presented that SDS such a kind of surfactant promotes gas hydrate formation dramatically and the quantity of stored gas are proportional to agitation speed in stirred system.

  • PDF

Investigation on the Practical Use of Gas Hydrate in Gas Industry (가스하이드레이트 산업시스템 실용화 현황 및 동향 분석)

  • Gwon, Ok-Bae;Sin, Chang-Hun;Park, Seung-Su;Han, Jeong-Min;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.415-418
    • /
    • 2006
  • In Japan, research and development were undertaken on gas hydrate-side industrial processes associated with power generation system connections that may particularly be necessary to develop gas hydrated technology-based industrial systems. In so doing, data and engineering technologies useful n formulating guidelines on design of practical process were accumulated. In addition, basic research into theoretical evidence were carried out to promote and support the development of technological elements for those processes. In basic research designed to promote and support the research and development of elemental technologies microanalyses were conducted to understand the decomposition mechanism of mixed gas hydrate. Moreover, measurement technologies that can be applied in industrial processes, such as numerical analyses and concentration ion measurement, were examined. Japan has developed a highly efficient gas hydrate formation process using micro-bubbles with a tubular reactor. Higher formation rate over conventional systems has been obtained by the process. As mentioned above, the technical problems were clarified and the economics were studied from a view point of the NGH technology in this study. The results can be applied for utilization and must contribute to popularization of gas hydrate production.

  • PDF

Investigation on the Practical Use of Gas Hydrate in Gas Industry (가스하이드레이트 산업시스템 실용화 현황 및 동향 분석)

  • Kwon Ok-Bae;Sin Chang-Hun;Park Seung-Su;Han Jeong-Min;Lee Jeong-Hwan
    • New & Renewable Energy
    • /
    • v.2 no.2
    • /
    • pp.102-107
    • /
    • 2006
  • In Japan, research and development were undertaken on gas hydrate-side industrial processes associated with power generation system connections that may particularly be necessary to develop gas hydrated technology-based industrial systems. In so doing, data and engineering technologies useful n formulating guidelines on design of practical process were accumulated. In addition, basic research into theoretical evidence were carried out to promote and support the development of technological elements for those processes. In basic research designed to promote and support the research and development of elemental technologies, microanalyses were conducted to understand the decomposition mechanism of mixed gas hydrate. Moreover, measurement technologies that can be applied in industrial processes, such as numerical analyses and concentration measurement, were examined. Japan has developed a highly efficient gas hydrate formation process using micro-bubbles with a tubular reactor. Higher formation rate over conventional systems has been obtained by the process. As mentioned above, the technical problems were clarified and the economics were studied from a view point of the NGH technology in this study. The results can be applied for utilization and must contribute to popularization of gas hydrate production.

  • PDF

Technology Trend for Gas Hydrate Production Method by the Patent Analysis (특허 분석에 의한 가스 하이드레이트 제조 기술 동향)

  • Kang, Seong-Pil;Seo, Yu-Teak;Keum, Young-Sup;Ahn, Myung-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.2
    • /
    • pp.171-181
    • /
    • 2008
  • There are several methods for the gas hydrate production such as spraying water with countercurrent gas flow, stirring water-gas mixture, and flowing water with micro-bubble, etc. These days it has been widely studied for the gas hydrate production method, having low energy consumption and high efficiency. In this paper, patents in the gas hydrate production method were gathered and analyzed. The search range was limited to the open patents of USA, European Union (EP), Japan (JP), and Korea (KR) from 1991 to 2007. Patents were gathered by using keywords searching and filtered by crucial criteria. The trends of the patents were analyzed by the years, countries, companies, and technologies.