• Title/Summary/Keyword: gas generation rate

Search Result 355, Processing Time 0.024 seconds

The Effect of Flue-gas Recirculation on Combustion Characteristics of Self Regenerative Low NOx Burner (자기축열식 저 NOx 연소기에서 배가스 재순환이 연소특성에 미치는 영향)

  • Kang, Min-Wook;Kim, Jong-Gyu;Dong, Sang-Keun;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced.

  • PDF

The effect of flue-gas recirculation on combustion characteristics of regenerative low NOx burner (축열식 저 NOx 연소기의 배가스 재순환이 연소특성에 미치는 영향)

  • Kang, Min-Wook;Yoon, Young-Bin;Dong, Sang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.97-104
    • /
    • 2002
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced

  • PDF

LSTM-based Early Fire Detection System using Small Amount Data

  • Seonhwa Kim;Kwangjae Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.110-116
    • /
    • 2024
  • Despite the continuous advancement of science and technology, fire accidents continue to occur without decreasing over time, so there is a constant need for a system that can accurately detect fires at an early stage. However, because most existing fire detection systems detect fire in the early stage of combustion when smoke is generated, rapid fire prevention actions may be delayed. Therefore we propose an early fire detection system that can perform early fire detection at a reasonable cost using LSTM, a deep learning model based on multi-gas sensors with high selectivity in the early stage of decomposition rather than the smoke generation stage. This system combines multiple gas sensors to achieve faster detection speeds than traditional sensors. In addition, through window sliding techniques and model light-weighting, the false alarm rate is low while maintaining the same high accuracy as existing deep learning. This shows that the proposed fire early detection system is a meaningful research in the disaster and engineering fields.

  • PDF

Performance Modeling of a Pyrotechnically Actuated Pin Puller

  • Jang, Seung-Gyo;Lee, Hyo-Nam;Oh, Jong-Yun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.102-111
    • /
    • 2014
  • An analytical model was developed to understand the physics and predict the functional performance of a pin puller. The formulated model is based on one-dimensional gas dynamics for an ideal gas. Resistive forces against pin shaft movement were measured in quasi-static mechanical tests, the results of which were incorporated into the model. The expansion chamber pressure and the pin shaft displacement were measured from an actual firing test and compared to the model prediction. The gas generation rate was adjusted by a correction factor, and the heat transfer rate was obtained through parametric analysis. The validity of the model is assessed for additional firing tests with different amounts of pyrotechnic charge. This model can provide knowledge on how the pin puller functions, and on which design parameters contribute the most to the actuation of the pin puller. Using this model, we estimate the functional safety factor by comparing the energy generated by the pyrotechnic charge to the energy required to accomplish the function.

The Effects of Heat-treatment on Magnetic Properties for Gas-atomized MPP Dust Cores (가스분무법으로 제조한 MPP 분말코어의 자기적 특성에 미치는 열처리 효과)

  • 노태환;김구현;김광윤;정인범;최광보
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.173-178
    • /
    • 2001
  • The effects of heat-treatment with magnetic or non-magnetic field on magnetic properties of gas-atomized MPP dust cores subjected to various cooling processes after annealing were investigated. Upon magnetic-field annealing, ac permeability and core loss decreased with the increase of cooling rate, which were attributed to the generation of inhomogeneous internal stress and anomalous eddy current loss, respectively. It was not observed the formation of ordered phase and the related change in magnetic properties at the cooling stage for MPP dust cores. In MPP alloys, magnetic anisotropy was easily induced through the directional order, and permeability and core loss were changed under the conditions of low cooling rate and magnetic annealing.

  • PDF

Evaluating the Performance of Four Selections in Genetic Algorithms-Based Multispectral Pixel Clustering

  • Kutubi, Abdullah Al Rahat;Hong, Min-Gee;Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.151-166
    • /
    • 2018
  • This paper compares the four selections of performance used in the application of genetic algorithms (GAs) to automatically optimize multispectral pixel cluster for unsupervised classification from KOMPSAT-3 data, since the selection among three main types of operators including crossover and mutation is the driving force to determine the overall operations in the clustering GAs. Experimental results demonstrate that the tournament selection obtains a better performance than the other selections, especially for both the number of generation and the convergence rate. However, it is computationally more expensive than the elitism selection with the slowest convergence rate in the comparison, which has less probability of getting optimum cluster centers than the other selections. Both the ranked-based selection and the proportional roulette wheel selection show similar performance in the average Euclidean distance using the pixel clustering, even the ranked-based is computationally much more expensive than the proportional roulette. With respect to finding global optimum, the tournament selection has higher potential to reach the global optimum prior to the ranked-based selection which spends a lot of computational time in fitness smoothing. The tournament selection-based clustering GA is used to successfully classify the KOMPSAT-3 multispectral data achieving the sufficient the matic accuracy assessment (namely, the achieved Kappa coefficient value of 0.923).

Phenol Removal Using Oxygen-Plasma Discharge in the Water (산소-플라즈마 방전을 이용한 수중의 페놀 제거)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.915-923
    • /
    • 2013
  • Decomposition of non-biodegradable contaminants such as phenol contained in water was investigated using a dielectric barrier discharge (DBD) plasma reactor in the aqueous solutions with continuous oxygen bubbling. Effects of various parameters on the removal of phenol in aqueous solution with high-voltage streamer discharge plasma are studied. In order to choose plasma gas, gas of three types (argon, air, oxygen) were investigated. After the selection of gas, effects of 1st voltage (80 ~ 220 V), oxygen flow rate (2 ~ 7 L/min), pH (3 ~ 11), and initial phenol concentration (12.5 ~ 100.0 mg/L) on phenol degradation and change of $UV_{254}$ absorbance were investigated. Absorbance of $UV_{254}$ can be used as an indirect indicator of phenol degradation and the generation and disappearance of the non-biodegradable organic compounds. Removal of phenol and COD were found to follow pseudo first-order kinetics. The removal rate constants for phenol and COD of phenol were $5.204{\times}10^{-1}min^{-1}$ and $3.26{\times}10^{-2}min^{-1}$, respectively.

Characteristics of Plasma Discharge according to the Gas-flow Rate in the Atmospheric Plasma Jets (대기압 플라즈마 제트의 기체 유량에 대한 방전 특성)

  • Lee, Won Young;Jin, Dong Jun;Kim, Yun Jung;Han, Gook Hee;Yu, Hong Keun;Kim, Hyun Chul;Jin, Se Whan;Koo, Je Huan;Kim, Do Young;Cho, Guangsup
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.111-118
    • /
    • 2013
  • The influence of gas flow on the plasma generation in the atmospheric plasma jet is described with the theory of hydrodynamics. The plasma discharge is affected by the gas-flow streams with Reynolds number (Re) as well as the gas pressure with Bernoulli's theorem according to the gas flow rate inserted into the glass tube. The length of plasma column is varied with the flow types such as the laminar flow of Re<2,000 and the turbulent flow of Re>4,000 as it has been known in a general fluid experiments. In the laminar flow, the plasma column length is increased as the increase of flow rate. Since the pressure in the glass tube becomes low as the increase of flow velocity by the Bernoulli's theorem, the breakdown voltage of plasma discharge is reduced by the Paschen's law. Therefore, the plasma length is increased as the increasing flow rate with the fixed operation voltage. In the transition of laminar and turbulent flows, the plasma length is decreased. When the flow becomes turbulent as the flow rate is increasing, the plasma length becomes short and the discharge is shut down ultimately. In the discharge of laminar flow, the diameter of plasma beam exposed on the substrate surface is kept less than the glass diameter, since the gas flow is kept to the distinct distance from the nozzle of glass tube.

Study on the Generation of Chemically Active Species using Air-plasma Discharging System (공기-플라즈마 방전 시스템에서 화학적 활성종의 생성에 대한 연구)

  • Kim, DongSeog;Park, YoungSeek
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.401-408
    • /
    • 2012
  • High-voltage dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. The initiation and propagation of the electrical discharges depends on several physical, chemical, and electrical parameters such as 1st and 2nd voltage of power, gas supply, conductivity and pH. These parameters also influence the physical and chemical characteristics of the discharges, including the production of reactive species such as OH, $H_2O_2$ and $O_3$. The experimental results showed that the optimum 1st voltage and air flow rate for RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical) degradation were 160 V (2nd voltage of is 15 kV) and 4 L/min, respectively. As the increased of the 2nd voltage (4 kV to 15 kV), RNO degradation, $H_2O_2$ and $O_3$ generation were increased. The conductivity of the solution was not influencing the RNO degradation and $H_2O_2$ and $O_3$ generation. The effects pH was not high on RNO degradation. However, the lower pH and the conductivity, the higher $H_2O_2$ and $O_3$ generation were observed.

A Study on the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with the Change of Outlet Opening Position (배기가스 재순환 버너에서 연소가스 출구 위치에 따른 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.8-13
    • /
    • 2018
  • Nitrogen oxides (NOx) have recently been very influential in the generation of ultrafine dust, which is of great social interest in terms of improving the atmospheric environment. Nitrogen oxides are generated mainly by the reaction of nitrogen and oxygen in air in a combustion gas atmosphere of high temperature in a combustion apparatus such as thermal power generation. Recently, research has been conducted on the combustion that recirculates the exhaust gas to the cylindrical burner by using a piping using a Coanda nozzle. In this study, three types of burners were carried out through computational fluid analysis. Case 1 burner with the outlet of the combustion gas to the right, Case 2 burner with both sides as gas exit, Case 3 burner with left side gas exit. The pressure, flow, temperature, combustion reaction rate and distribution characteristics of nitrogen oxides were compared and analyzed. The combustion reaction occurred in Case 1 and Case 2 burner in the right direction with combustion gas recirculation inlet and Case 3 burner in the vicinity of mixed gas inlet. The temperature at the outlet was about $100^{\circ}C$ lower than that of the other burners as the Case 2 burner was exhausted to both sides. The NOx concentration of Case 1 burner at the exit was about 20 times larger than that of the other burners. From the present study, it could be seen that it is effective for the NOx reduction to exhaust the exhaust gas to both side gas exits or to exhaust the exhaust gas to the opposite direction of inlet of recirculation gas.