• Title/Summary/Keyword: gas foil bearings

Search Result 29, Processing Time 0.02 seconds

Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps (범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석)

  • Kim, T.H.;Mun, H.W.
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

Elasto-Hydrodynamic Lubrication Characteristics of Bump Foil Bearings (범프포일베어링의 탄성유체윤활 특성)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.98-103
    • /
    • 2004
  • This paper presents modeling and simulation of the bump foil bearings with consideration of the elastic behavior of the foil and gas compressibility. Heshmat had originally introduced the simple compliance model to estimate the EHL(elasto-hydrodynamic lubrication) performance. But this approach can not consider the deflection of top foil at the edge of bearing, so model is insufficient to analyze in case that the eccentricity ratio is greater than I. So the top foil is considered as a simple beam model supported by linear spring elements, and the bump foil deflection can be simple compliance model. The EHL calculations are performed for convention rigid type, classical foil type, variable pitch type and double bump type toil bearings. This paper presents that 2nd or 3rd generation bearings have excellent performance in every speeds.

  • PDF

Performance Analysis of Gas Foil Journal & Thrust Bearings (가스포일 저널베어링 및 스러스트베어링의 성능해석)

  • Kim Young-Cheol;Han Jeong-Wan;Kim Kyung-Woong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-272
    • /
    • 2003
  • This paper presents a performance analysis model of corrugated bump foil bearings. The analyses for not only 1st generation bump foil journal bearings but also bump foil thrust bearings are performed. Static performances such as load capacity, attitude angle, pressure distribution, foil deflection, and film thickness are accurately estimated by using soft elasto-hydrodynamic analysis technique and finite difference numerical method. Also dynamic performances such as stiffness coefficients and damping coefficients are estimated by perturbation method. The analysis technique may be appliable to rotordynamic analysis, stability analysis, and optimized bearing design.

  • PDF

Experimental Study on the Load Carrying Performance and Driving Torque of Gas Foil Thrust Bearings (가스 포일 스러스트 베어링의 하중지지 성능 및 구동 토크에 관한 실험적 연구)

  • Kim, Tae Ho;Lee, Tae Won;Park, Moon Sung;Park, Jungmin;Kim, Jinsung;Jeong, Jinhee
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.141-147
    • /
    • 2015
  • Gas foil thrust bearings (GFTBs) have attractive advantages over rolling element bearings and oil film thrust bearings, such as oil-free operation, high speed stability, and high-temperature operation. However, GFTBs have lower load carrying capacity than the other two types of bearings owing to the inherent low gas viscosity. The load carrying capacity of GFTBs depends mainly on the compliance of the foil structure and the formed hydrodynamic wedge, where the gas pressure field is generated between the top foil and the thrust runner. The load carrying capacity of the GFTBs is very important for the suitable design of oil-free turbomachinery with high performance. The aim of the present study is to identify the characteristics of the load carrying performance of GFTBs. A new test rig for the experimental measurements is designed to provide static loads up to 800 N using a pneumatic cylinder. The maximum operating speed of the driving motor is 30,000 rpm. A series of experimental tests—lift-off test, static load performance test, and maximum load capacity test—estimate the performance of a six-pad GFTB, in terms of the static load, driving torque, and temperature. The maximum load capacity is determined by increasing the static load until the driving torque rises suddenly with a sharp peak. The test results show that the torque and temperature increase linearly with the static load. The estimated maximum load capacity per unit area is approximately 80.5 kPa at a rotor speed of 25,000 rpm. The test results can be used as a design guideline for GFTBs for realizing oil-free turbomachinery.

Rotordynamic Performance Measurements of An Oil-Free Turbocharger Supported on Gas Foil Bearings and Their Comparisons to Floating Ring Bearings

  • Lee, Yong-Bok;Park, Dong-Jin;Sim, Kyuho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.23-35
    • /
    • 2015
  • This paper presents the rotordynamic performance measurement of oil-free turbocharger (TC) supported on gas foil bearings (GFBs) for 2 liter class diesel vehicles and comparison to floating ring bearings (FRBs). Oil-free TC was designed and developed via the rotordynamic analyses using dynamic force coefficients from GFB analyses. The rotordynamics and performance of the oil-free TC was measured up to 85 krpm while being driven by a diesel vehicle engine, and compared to a commercial oil-lubricated TC supported on FRBs. The test results showed that the GFBs increased the rotor speed by ~ 20% at engine speeds of 1,500 rpm and 1,750 rpm, yielding the reduction of turbine input energy by more than 400 W. Incidentally, an external shock test on the oil-free TC casing was conducted at the rotor speed of 60 krpm, and showed a good capability of vibration damping due to the well-known dry friction mechanism of the GFBs.

Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows (난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.

Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports (볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성)

  • Seo, Jung Hwa;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.

Effects of the Slopes of the Rotational Axis and Bearing Preloads on the Natural Frequencies and Onset Speed of the Instability of a Rotor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지된 고속 회전체의 경사각과 베어링의 기계적 예압이 고유 진동수와 불안정성 발생 속도에 미치는 영향)

  • Park, Moon Sung;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • This study investigates the effects of the slopes of the rotational axis and bearing preloads on the natural frequencies and onset speeds of the instability of a rotor supported on gas foil bearings (GFBs). The predictive model for the rotating system consists of a rigid rotor supported on two gas foil journal bearings (GFJBs) and a pair of gas foil thrust bearings (GFTBs). Each GFJB supports approximately half the rotor weight. As the slope of the rotational axis increases from $0^{\circ}$(horizontal rotor operation) to $90^{\circ}$(vertical rotor operation), the applied load on the GFJB owing to the rotor weight decreases. The predictions show that the natural frequency and onset speed of instability decrease significantly with an increase in the slope of the rotational axis. In a parametric study, the nominal radial clearance and preload for the GFJB were changed. In general, a decrease in the nominal radial clearance lead to an increase in the natural frequency and onset speed of instability. For constant assembly clearance, the decrease in the preload changed the natural frequency and onset speed of instability with insignificant improvements in the rotordynamic stability. The present predictions can be used as design guidelines for GFBs for oil-free high-speed rotating machinery with improved rotordynamic performance.

Development of Foil Journal Bearing for Turbo Machinery (터보기기용 포일 저널 베어링 개발)

  • Kim, Kyeong Su;Lee, Ki Ho;Kim, Seung Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.475-481
    • /
    • 2001
  • Foil bearings have been successfully used for small high speed rotors, such as ACM(Air Cycle Machine), turbo charger, turbo compressor, high speed motor, etc. Recently advanced researches are concentrated on the high load capacity and the extreme temperature foil bearings to extend the application boundary. Some bearings are already adopted into cryogenic machines and micro gas turbines. In this paper, a foil journal bearing designed for high load capacity, which is under development, is introduced. The bearing is for the turbo refrigerator which has a rotor of 18${\~}$25 kgf rotating at 23,000${\~}$38,000 rpm. This application is well beyond conventional spectrum of foil bearings because the rotor is relatively heavy and the rotational speed is low. Therefore, the development is challenging. The foil bearing is a bump type, the size is 60mm in diameter and 50mm in length, the operating fluid is air and rotational speed is 26,000 rpm. In-house software was developed and used for bearing design. Tested maximum load capacity is 80kgf, 0.62 in terms of load capacity coefficient, and testing is being continued.

  • PDF

On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads (범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구)

  • Lee, Sungjin;Ryu, Keun;Jeong, Jinhee;Ryu, Solji
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.