• Title/Summary/Keyword: gas classifier

Search Result 18, Processing Time 0.022 seconds

Design of Gas Classifier Based On Artificial Neural Network (인공신경망 기반 가스 분류기의 설계)

  • Jeong, Woojae;Kim, Minwoo;Cho, Jaechan;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.700-705
    • /
    • 2018
  • In this paper, we propose the gas classifier based on restricted column energy neural network (RCE-NN) and present its hardware implementation results for real-time learning and classification. Since RCE-NN has a flexible network architecture with real-time learning process, it is suitable for gas classification applications. The proposed gas classifier showed 99.2% classification accuracy for the UCI gas dataset and was implemented with 26,702 logic elements with Intel-Altera cyclone IV FPGA. In addition, it was verified with FPGA test system at an operating frequency of 63MHz.

Learning Rules for AMR of Collision Avoidance using Fuzzy Classifier System (퍼지 분류자 시스템을 이용한 자율이동로봇의 충돌 회피 학습)

  • 반창봉;전효병;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.179-182
    • /
    • 2000
  • A Classifier System processes a discrete coded information from the environment. When the system codes the information to discontinuous data, it loses excessively the information of the environment. The Fuzzy Classifier System(FCS) makes the classifier system be able to carry out the mapping from continuous inputs to outputs. It is the FCS that applies this ability of the machine learning to the concept of fuzzy controller. It is that the antecedent and consequent of classifier is same as a fuzzy rule of the rule base. In this paper, the FCS is the Michigan style and fuzzifies the input values to create the messages. The system stores those messages in the message list and uses the implicit Bucket Brigade Algorithms. Also the FCS employs the Genetic Algorithms(GAs) to make new rules and modify rules when performance of the system needs to be improved. We will verify the effectiveness of the proposed FCS by applying it to AMR avoiding the obstacle.

  • PDF

Design of SVM-Based Gas Classifier with Self-Learning Capability (자가학습 가능한 SVM 기반 가스 분류기의 설계)

  • Jeong, Woojae;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1400-1407
    • /
    • 2019
  • In this paper, we propose a support vector machine (SVM) based gas classifier that can support real-time self-learning. The modified sequential minimal optimization (MSMO) algorithm is employed to train the proposed SVM. By using a shared structure for learning and classification, the proposed SVM reduced the hardware area by 35% compared to the existing architecture. Our system was implemented with 3,337 CLB (configurable logic block) LUTs (look-up table) with Xilinx Zynq UltraScale+ FPGA (field programmable gate array) and verified that it can operate at the clock frequency of 108MHz.

Development of Visual Inspection Process Adapting Naive Bayes Classifiers (나이브 베이즈 분류기를 적용한 외관검사공정 개발)

  • Ryu, Sun-Joong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2015
  • In order to improve the performance of the visual inspection process, in addition to existing automatic visual inspection machine and human inspectors have developed a new process configuration using a Naive Bayes classifier. By applying the classifier, defect leakage and human inspector's work amount could be improved at the same time. New classification method called AMPB was applied instead of conventional methods based on MAP classification. By experimental results using the filter product for camera modules, it was confirmed that it is possible to configure the process at the level of leakage ratio 1.14% and human inspector's work amount ratio 75.5%. It is significant that the result can be applied in such a wide range as gas leak detection which is the collaboration process between inspection machine and human inspector's

A Construction of Fuzzy Model for Data Mining (데이터 마이닝을 위한 퍼지 모델 동정)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Jung-Chan;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.191-194
    • /
    • 2002
  • In this paper, a new GA-based methodology with information granules is suggested for construction of the fuzzy classifier. We deal with the selection of the fuzzy region as well as two major classification problems-the feature selection and the pattern classification. The proposed method consists of three steps: the selection of the fuzzy region, the construction of the fuzzy sets, and the tuning of the fuzzy rules. The genetic algorithms (GAs) are applied to the development of the information granules so as to decide the satisfactory fuzzy regions. Finally, the GAs are also applied to the tuning procedure of the fuzzy rules in terms of the management of the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example-the classification of the Iris data, is provided.

A design of fuzzy pattern matching classifier using genetic algorithms and its applications (유전 알고리즘을 이용한 퍼지 패턴 매칭 분류기의 설계와 응용)

  • Jung, Soon-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.87-95
    • /
    • 1996
  • A new design scheme for the fuzzy pattern matching classifier (FPMC) is proposed. in conventional design of FPMC, there are no exact information about the membership function of which shape and number critically affect the performance of classifier. So far, a trial and error or heuristic method is used to find membership functions for the input patterns. But each of them have limits in its application to the various types of pattern recognition problem. In this paper, a new method to find the appropriate shape and number of membership functions for the input patterns which minimize classification error is proposed using genetic algorithms(GAs). Genetic algorithms belong to a class of stochastic algorithms based on biological models of evolution. They have been applied to many function optimization problems and shown to find optimal or near optimal solutions. In this paper, GAs are used to find the appropriate shape and number of membership functions based on fitness function which is inversely proportional to classification error. The strings in GAs determine the membership functions and recognition results using these membership functions affect reproduction of next generation in GAs. The proposed design scheme is applied to the several patterns such as tire tread patterns and handwritten alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

Prototype-based Classifier with Feature Selection and Its Design with Particle Swarm Optimization: Analysis and Comparative Studies

  • Park, Byoung-Jun;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.245-254
    • /
    • 2012
  • In this study, we introduce a prototype-based classifier with feature selection that dwells upon the usage of a biologically inspired optimization technique of Particle Swarm Optimization (PSO). The design comprises two main phases. In the first phase, PSO selects P % of patterns to be treated as prototypes of c classes. During the second phase, the PSO is instrumental in the formation of a core set of features that constitute a collection of the most meaningful and highly discriminative coordinates of the original feature space. The proposed scheme of feature selection is developed in the wrapper mode with the performance evaluated with the aid of the nearest prototype classifier. The study offers a complete algorithmic framework and demonstrates the effectiveness (quality of solution) and efficiency (computing cost) of the approach when applied to a collection of selected data sets. We also include a comparative study which involves the usage of genetic algorithms (GAs). Numerical experiments show that a suitable selection of prototypes and a substantial reduction of the feature space could be accomplished and the classifier formed in this manner becomes characterized by low classification error. In addition, the advantage of the PSO is quantified in detail by running a number of experiments using Machine Learning datasets.

ART2 Neural Network Applications for Diagnosis of Sensor Fault in the Indoor Gas Monitoring System

  • Lee, In-Soo;Cho, Jung-Hwan;Shim, Chang-Hyun;Lee, Duk-Dong;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1727-1731
    • /
    • 2004
  • We propose an ART2 neural network-based fault diagnosis method to diagnose of sensor in the gas monitoring system. In the proposed method, using thermal modulation of operating temperature of sensor, the signal patterns are extracted from the voltage of load resistance. Also, fault classifier by ART2 NN (adaptive resonance theory 2 neural network) with uneven vigilance parameters is used for fault isolation. The performances of the proposed fault diagnosis method are shown by simulation results using real data obtained from the gas monitoring system.

  • PDF

Detection of Abnormal Signals in Gas Pipes Using Neural Networks

  • Min, Hwang-Ki;Park, Cheol-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.669-670
    • /
    • 2008
  • In this paper, we present a real-time system to detect abnormal events on gas pipes, based on the signals which are observed through the audio sensors attached on them. First, features are extracted from these signals so that they are robust to noise and invariant to the distance between a sensor and a spot at which an abnormal event like an attack on the gas pipes occurs. Then, a classifier is constructed to detect abnormal events using neural networks. It is a combination of two neural network models, a Gaussian mixture model and a multi-layer perceptron, for the reduction of miss and false alarms. The former works for miss alarm prevention and the latter for false alarm prevention. The experimental result with real data from the actual gas system shows that the proposed system is effective in detecting the dangerous events in real-time with an accuracy of 92.9%.

  • PDF

Implementation of simple statistical pattern recognition methods for harmful gases classification using gas sensor array fabricated by MEMS technology (MEMS 기술로 제작된 가스 센서 어레이를 이용한 유해가스 분류를 위한 간단한 통계적 패턴인식방법의 구현)

  • Byun, Hyung-Gi;Shin, Jeong-Suk;Lee, Ho-Jun;Lee, Won-Bae
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.406-413
    • /
    • 2008
  • We have been implemented simple statistical pattern recognition methods for harmful gases classification using gas sensors array fabricated by MEMS (Micro Electro Mechanical System) technology. The performance of pattern recognition method as a gas classifier is highly dependent on the choice of pre-processing techniques for sensor and sensors array signals and optimal classification algorithms among the various classification techniques. We carried out pre-processing for each sensor's signal as well as sensors array signals to extract features for each gas. We adapted simple statistical pattern recognition algorithms, which were PCA (Principal Component Analysis) for visualization of patterns clustering and MLR (Multi-Linear Regression) for real-time system implementation, to classify harmful gases. Experimental results of adapted pattern recognition methods with pre-processing techniques have been shown good clustering performance and expected easy implementation for real-time sensing system.