• 제목/요약/키워드: gas classification

검색결과 238건 처리시간 0.024초

NATM터널의 공종별 환경부하 특성 분석 (Analysis of Environmental Load by Work Classification for NATM Tunnels)

  • 이주현;심진아;김경주
    • 대한토목학회논문집
    • /
    • 제36권2호
    • /
    • pp.307-315
    • /
    • 2016
  • 국내 외 기후변화 대응 체제의 강화에 따라 전 세계적으로 온실가스 감축을 위한 노력을 기울이고 있다. 건설 분야에서는 건축물을 중심으로 온실가스 저감을 위한 연구가 활발히 이루어지고 있으나, 온실가스 이외에 지구환경에 영향을 미치는 각종 오염물질을 고려한 종합적인 환경부하 저감을 위한 연구는 다소 부족하다. 이에 본 연구에서는 NATM터널을 대상으로 LCA (Life Cycle Assessment, 전과정 평가) 방법론을 이용하여 공종별 환경부하 특성을 분석하였다. 분석 결과, 라이닝콘크리트공, 숏크리트공, 갱문 및 개착터널 등 7대 공종이 NATM터널의 주요 환경부하 공종으로 나타났으며 전체 환경부하량의 89.22%를 차지하는 것으로 나타났다. 또한 대표공종들의 연장(m)당 환경부하량을 산정하여 비교 분석한 결과 개착구간에 해당하는 갱문 및 개착터널 공종의 환경부하량이 가장 큰 것으로 나타났으며, 전체 터널 구간을 대상으로 할 경우 라이닝콘크리트공과 숏크리트공에서 환경부하량이 많이 발생하는 것으로 분석되었다. 본 연구의 결과는 설계초기단계에서 환경부하 대표공종의 물량을 개략적으로 산출하여 전체 환경부하량을 추정하는 모델 개발 시 활용할 수 있을 것으로 판단되며, 향후 친환경 SOC건설을 위한 환경부하 관리방안을 수립하는데 큰 역할을 할 것으로 기대된다.

식품 중 사용금지 원료인 Aphanizomenon flos-aquae 검출법 개발 및 응용 (Development and Application of Detection Method for Aphanizomenon flos-aquae not Usable as a Food Materials in Korea)

  • 박용춘;신승정;이호연;김용상;김미라;이상재;이화정
    • 한국식품위생안전성학회지
    • /
    • 제28권2호
    • /
    • pp.188-193
    • /
    • 2013
  • Aphanizomenon flos-aquae는 시아노박테리아 일종이며 anatoxin-a, saxitoxin, neosaxitoxin 등의 독소를 생산할 수 있어 국내에서는 식품원료로 사용이 금지되어있다. 전통적으로 시아노박테리아는 사상체 넓이, 세포 크기, 분열방법, 세포형태, 가스주머니의 존재유무 등의 형태학적 특징에 의한 분류가 가능하다. 그러나 가스주머니 혹은 무성포자와 같은 특징은 주변 환경 또는 생장조건에 따라 차이가 있으며 경우에 따라 소실되기도 한다. 따라서 PCR에 의한 Aph. flos-aquae를 함유하는 기능식품을 검출할 수 있는 분석법을 개발하였다. 프라이머를 설계하기 위하여 유전자은행(www.ncbi.nlm.nih.gov)에 등록되어있는 Aph. flos-aquae, 스피루리나의 16S rRNA 염기서열을 이용하였으며, 비교 및 분석에는 BioEdit ver. 7.0.9.0 프로그램을 사용하였다. 최종적으로 클로렐라, 스피루리나, 녹차, 시금치로부터 Aph. flos-aquae를 검출할 수 있는 AFA-F1/AFA-R1(363 bp) 프라이머를 최종 선정하였다. 그리고 상기 프라이머는 Aph. flos-aquae가 각각 1% 함유 되도록 제조된 클로렐라, 스피루리나 제품에서 모두 혼입여부의 확인이 가능함을 확인하였다.

표토유실 보전을 통한 온실가스배출 저감과 수자원 보전 기능의 산출 및 정책제안 (Estimating of the Greenhouse Gas Mitigation and Function of Water Resources Conservation through Conservation of Surface Soils Erosion and Policy Suggestion)

  • 오승민;김혁수;이상필;이종건;정석순;임경재;김성철;박윤식;이기하;황상일;양재의
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권6호
    • /
    • pp.74-84
    • /
    • 2017
  • Soil erosion is often extreme in Korea due to high rainfall intensities and steep slopes, and climate change has also increased the risk of erosion. Despite its significane, erosion-induced soil organic carbon (SOC) emission and water resource loss are not well understood, along with the lack of an integrated surface soil erosion protection policy. Therefore, to design adequate protection policies, land users, scientists, engineers and decision makers need proper information about surface soil and watershed properties related to greenhouse gas emission potential and water conservation capability, respectively. Assuming the total soil erosion of $346Tg\;yr^{-1}$, soil organic matter (SOM) content of 2% (58% of SOM is SOC), and mineralization rate of 20% of the displaced carbon, erosion-induced carbon emission could reach $800Gg\;C\;yr^{-1}$. Also the available water capacity of the soil was estimated to be 15.8 billion tons, which was 14 times higher than the yearly water supply demand in Seoul, Korea. Therefore, in order to prevent of soil erosion, this study proposes a three-stage plan for surface soil erosion prevention: 1) classification of soil erosion risk and scoring of surface soil quality, 2) selection of priority areas for conservation and best management practices (BMP), and 3) application of BMP and post management.

탄소감축 정책의 경제적 영향: 거시계량모형에 기반한 배출권가격 변동 효과 분석 (Economic Impacts of Carbon Reduction Policy: Analyzing Emission Permit Price Transmissions Using Macroeconometric Models)

  • 이제훈;조수진
    • 자원ㆍ환경경제연구
    • /
    • 제33권1호
    • /
    • pp.1-32
    • /
    • 2024
  • 배출권거래제는 대표적인 기후정책으로 온실가스 총배출량의 87%(2021년 기준)에 대한 감축 유인체계를 형성한다. 상당량의 감축이 기대되는 가운데 배출권가격 변동이 경제, 에너지 및 환경 부문에 미칠 파급 효과에 대한 심도있는 이해가 필요하다. 본 고는 거시계량 기반 연립방정식 모형을 통해 배출권거래제의 정책효과를 분석한 국내 최초의 연구로, 한국표준산업분류(경제), 에너지밸런스(에너지), 국가온실가스인벤토리(환경)를 연결해 현실 설명력을 제고한 데 의의를 지닌다. E3 동학에 대한 분석결과에 따르면 4년에 걸친 배출권가격의 50% 인상 충격은 온실가스 배출량 감소(-0.043%)와 함께 주요 거시변수인 실질GDP(-0.058%), 민간소비(-0.003%) 및 투자(-0.301%) 등의 하방 이동으로 귀결된다. 배출권가격의 인상은 온실가스 감축목표 달성의 필수불가결한 요소로, 가격 인상 충격에 따른 이행리스크에 대응함으로써 거시 경제의 지속가능성을 담보하기 위해 경매수익을 활용한 세수환원 방안을 검토할 수 있다. 본 연구는 법인세 경감 및 경상이전지출 확대 등 세수환원 수단 중 성장 측면에서 후자의 정책 비교우위를 확인했다.

Comparison of Pyrolysis Patterns of Different Tobacco Leaves by Double-Shot Pyrolysis-GC/MSD Method

  • Lee, Chang-Gook;Lee, Jae-Gon;Jang, Hee-Jin;Kwon, Young-Ju;Lee, Jang-Mi;Kwag, Jae-Jin;Kim, Soo-Ho;Sung, Yong-Joo;Shin, Chang-Ho;Kim, Kun-Soo;Rhee, Moon-Soo
    • 한국연초학회지
    • /
    • 제30권2호
    • /
    • pp.94-102
    • /
    • 2008
  • In this paper, we describe our study on the characterization of tobacco leaves by their pyrolysis patterns. Two kinds of tobacco leaves were pyrolyzed and analyzed by Double-Shot Pyrolysis-Gas Chromatography/Mass Spectroscopy (Py-GC/MS) methods. Three grades of Korean flue-cured tobacco leafsuch as B1O, AB3O, CD3L and burley tobacco leaves such as B1T, AB3T, CD3W were pyrolyzed with six discrete but stepwise heating temperature ranges, those are from 100$^{\circ}C$ to 150$^{\circ}C$, 150$^{\circ}C$ to 200$^{\circ}C$, 200$^{\circ}C$ to 250$^{\circ}C$, 250$^{\circ}C$ to 300$^{\circ}C$, 300$^{\circ}C$ to 350$^{\circ}C$ and finally from 350$^{\circ}C$ to 400$^{\circ}C$. Using the resultant 52 pyrolytic components identified in the programs as components, principal component analysis (PCA) showed statistical classification between flue-cured and burley tobacco lamina. Among six pyrolysis temperature ranges, the best discrimination was achieved at the temperature range from 250$^{\circ}C$ to 300$^{\circ}C$ and from 300$^{\circ}C$ to 350$^{\circ}C$.

Study on System Support for Offshore Plant Piping Process Using 3D Simulator

  • Kim, Hyun-Cheol;Lee, Gyu-Hong
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.217-226
    • /
    • 2020
  • An offshore plant is an offshore platform that can process oil and gas resources in rough seas with a poor working environment. Moreover, it is a complex structure with different types of offshore facilities and a large amount of outfitting that connects different offshore installations. In particular, an enormous amount of various piping materials is installed in a relatively narrow space, and thus, the difficulty of working is relatively high compared to working in ships or ground plants. Generally, when the 3D detailed design is completed, an offshore plant piping process is carried out at the shipyard with ISO 2D fabrication drawings and ISO 2D installation drawings. If a worker wants to understand the three-dimensional piping composition in the working area, he can only use three-dimensional viewers that provide limited functionality. As offshore plant construction progresses, correlating work with predecessors becomes more complicated and rework occurs because of frequent design changes. This viewer function makes it difficult to identify the 3D piping structure of the urgently needed part. This study deals with the process support method based on a system using a 3D simulator to improve the efficiency of the piping process. The 3D simulator is based on the Unity3D engine and can be simulated by considering the classification and priority of 3D models by the piping process in the system. Further, it makes it possible to visualize progress information of the process. In addition, the punch content can be displayed on the 3D model after the pipe inspection. Finally, in supporting the data in relation to the piping process, it is considered that 3D-simulator-supported piping installing could improve the work efficiency by more than 99% compared to the existing method.

A Review of IOSS Design Standardization Technology for Aluminum Alloy Handrail of Offshore Platform

  • Kim, Yeon-Ho;Park, Joo-Shin;Shin, Hyun-Chang;Kim, Sung-Jun;Park, Dae-Kyeom;Ha, Yeon-Chul;Seo, Jung-Kwan
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.208-216
    • /
    • 2020
  • The Integrated Offshore Standard Specification (IOSS) involves Korean shipyards, classification societies, research institutes, the Korean industrial society, engineering companies, and oil companies with the objective of reducing costs and risks without compromising safety in international offshore engineering procurement construction (EPC) projects using new standardized bulk components and qualification procedures. The activities of the IOSS include the analysis of the existing rules and regulations to achieve the best standardization, which is reflected in the best practices, and minimize the variables in regulations and rules. In addition, a standard inventory of shapes and dimensions, referred to as specifications, is proposed in the IOSS. In this paper, the aluminum tertiary standardization part (IOSS S102-1/2 S104: Specification for Structural Tertiary Design) is presented with the details of the procedures, background reviews, and cost-benefit analyses of the design and verification methods for standard designs in the IOSS standardization items. Based on the cost-benefit analysis, the application of standardized aluminum tertiary items to offshore projects has significant advantages in terms of maintenance and repair compared to the carbon steel tertiary items utilized in current industrial practices.

SRF 사용 시 발생되는 대기오염물질 (PM, NOx)의 국가배출량 기여도 평가 (SRF Combustion Pollutants' Impact on Domestic Emissions Assessments)

  • 김상균;장기원;김종현;유철;홍지형;김형천
    • 한국대기환경학회지
    • /
    • 제28권6호
    • /
    • pp.656-665
    • /
    • 2012
  • Recently, yearly production of SRF (Solid Recovered Fuel) as an alternative fuel has been rapidly increasing because of the limited waste disposal, rise in oil prices and reduction of greenhouse gas emission. However, SRF using facilities are excluded from the National Air Pollutant Emission Estimation because SRF using facilities are not yet included among the SCC (Source Classification Code). The purpose of this research was to estimate the emission and emission factor of SRF using facilities' PM and $NO_x$, in order to investigate whether or not they are included in the National Air Pollutant Emission Estimation. The emission factors of SRF using facilities' PM and $NO_x$ are calculated as 0.216 kg/ton, and 3.970 kg/ton, and the emission was estimated based on the yearly total SRF usage of 2011. The results above was 18.7% for PM and 12.8% for $NO_x$ emissions from combustion facility (SCC2) in manufacturing industry combustion (SCC1) of CAPSS. If CAPSS estimate the emission by adding SCC on unlisted SRF in case of Boiler (SCC3) fuel, both PM and $NO_x$'s emissions would increase by 15.8% and 11.3% compare to the emissions for the existing combustion facility. As a result, emissions caused by SRF should be considered when calculating the National Air Pollutant Emission Estimation. In addition, further researches to develop emission factor and improve subdivided SCC should be done in the future, for the accurate and reliable estimation of National Emission.

A Study of Polarimetric Properties of Comet C/2013 US10 (Catalina) in Optical and Near-Infrared Wavelength Regions

  • Kwon, Yuna Grace;Ishiguro, Masateru;Kuroda, Daisuke;Hanayama, Hidekazu;Kawabata, Koji S.;Akitaya, Hiroshi;Itoh, Ryosuke;Nakaoka, Tatsuya;Toda, Hiroshi;Yoshida, Michitoshi;Kawai, Nobuyuki;Watanabe, Jun-Ichi
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.50.2-50.2
    • /
    • 2016
  • Polarization is a rich source of information on the physical properties of astronomical objects. In particular, scattered sunlight by optically thin media (e.g., cometary comae) shows linear polarization of light, which highly depends on the phase angle (an angle between the Sun-Comet-Earth), wavelengths, and physical properties of cometary dust particles such as size, composition, and structures. Here, we present a study of polarimetric properties of non-periodic comet C/2013 US10 (Catalina) in optical and near-infrared wavelength regions obtained from imaging, spectroscopy, and polarimetric observations taken on UT 2015 December 17 - 19 welcoming its (probably) first close approach to the Earth. In this presentation, we want to introduce our progress since the last Korean Astronomical Society meeting (at BEXCO, Busan, 2016 April 14 - 15) especially in terms of spatial variations of degree of linear polarization (DOLP) and its possible scenarios to explain the correlations with other observational results. In particular, we found that there is strong anti-correlation between the gas/dust flux ratio and DOLP at the cometocentric distance of $(2-5){\times}104 km$. Besides, within 10 arcseconds in radii (corresponding to inner coma region of 104 km from the center), the inverse relationship of these two parameters does not hold anymore. We conjecture that the rapid outward increase of DOLP can be supported by either the sublimation/evaporation of icy volatiles, disaggregation of cometary dust particles ejected from the nucleus, and/or difference of dominant dust particle sizes. From our results, we can conclude that comet C/2013 US10 (Catalina) corroborates rather indefinite traditional classification of poalrimetric classes of comets, and provides good opportunity to study less processed material which probably cherishes its memory at the formation epoch of the Solar System.

  • PDF

Levels of Exhaled Breath Condensate pH and Fractional Exhaled Nitric Oxide in Retired Coal Miners

  • Lee, Jong-Seong;Shin, Jae-Hoon;Lee, Joung-Oh;Lee, Kyung-Myung;Kim, Ji-Hong;Choi, Byung-Soon
    • Toxicological Research
    • /
    • 제26권4호
    • /
    • pp.329-337
    • /
    • 2010
  • Inhaled inorganic dusts, such as coal, can cause inflammation and fibrosis in the lungs, known as pneumoconiosis. Diagnosis of pneumoconiosis depends on morphological changes by radiological findings and functional change by pulmonary function test (PFT). Unfortunately, current diagnostic findings are limited only to lung fibrosis, which is usually irreversibly progressive. Therefore, it is important that research on potential and prospective biomarkers for pneumoconiosis should be conducted prior to initiation of irreversible radiological or functional changes in the lungs. Analytical techniques using exhaled breath condensate (EBC) or exhaled gas are non-invasive methods for detection of various respiratory diseases. The objective of this study is to investigate the relationship between inflammatory biomarkers, such as EBC pH or fractional exhaled nitric oxide ($FE_{NO}$), and pneumoconiosis among 120 retired coal miners (41 controls and 79 pneumoconiosis patients). Levels of EBC pH and FENO did not show a statistically significant difference between the pneumoconiosis patient group and pneumoconiosis patients with small opacity classified by International Labor Organization (ILO) classification. The mean concentration of $FE_{NO}$ in the low percentage $FEV_1$ (< 80%) was lower than that in the high percentage (80% $\leq$) (p = 0.023). The mean concentration of $FE_{NO}$ in current smokers was lower than that in non smokers (never or past smokers) (p = 0.027). Although there was no statistical significance, the levels of $FE_{NO}$ in smokers tended to decrease, compared with non smokers, regardless of pneumoconiosis. In conclusion, there was no significant relationship between the level of EBC pH or $FE_{NO}$ and radiological findings or PFT. The effects between exhaled biomarkers and pneumoconiosis progression, such as decreasing PFT and exacerbation of radiological findings, should be monitored.