• Title/Summary/Keyword: gas chromatography/mass spectrometry (GC/MS)

Search Result 665, Processing Time 0.032 seconds

Studies on Photosensitized Oxidation in the Lipids of Irish moss, Laver and Oyster (진두발, 김 및 굴의 지질에 있어서 광증감 산화에 관한 연구)

  • KIM Kui-Shik;KOIZUMI Chiaki;BAE Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.355-360
    • /
    • 1997
  • In order to investigate the influence of photosensitized oxidation in the sun-dried irish moss (Chondrus Ocellatus), laver (Porphyra Yezoensis) and ultra violet irradiated oyster (Crassostrea gigas) the oxidation of lipid and isomers of hydroperoxides were analyzed by gas chromatography-mass spectrometry. The lipid contents of oyster, irish moss and layer were $2.7\%,\;0.1\%,\;0.1\%$ of respectively. Peroxide value, 56,7 meq/kg in the raw oyster was increased of 100.9 meq/kg by the U.V, irradiation for 4 hours. Also the peroxide values of the irish moss and laver were increased by the sun-drying. In the identification of hydroperoxides isomers by trimethylsily (TMS) derivative of photo-oxidized lipid from oyster, irish moss and laver, the proportions of positional isomer, 9-OOH and 13-OOH were dominant than those 10-OOH and 12-OOH.

  • PDF

Identification of Irradiation -induced Volatile Marker Compounds in Irradiated Red Pepper Powder (방사선조사 고추가루로부터 휘발성 표지물질의 구명)

  • Kim, Hun;Ahn, Jun-Suck;Sin, Yeong-Min;Lee, Yong-Ja;Lee, Kyung-Hae;Byun, Myung-Woo;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • To develop a new detection method using irradiation-induced volatile marker compounds of red pepper powder (RP), the volatile compounds of irradiated RP (0, 1, 3, 5, and 10 kGy) were analyzed by purge and trap (P&T)/solid phase microextraction (SPME)/gas chromatography/mass spectrometry (GC/MS) methods. A total of 51 and 31 compounds were detected in IRP by SPME and P&T methods, respectively. Among these, 25 compounds, which were composed of 4 hydrocarbons, 7 aldehydes, 1 ketone, 3 alcohols, 4 aromatic compounds, 2 esters and 4 miscellaneous compounds, showed irradiation dependent manner with significant positive correlation (p<0.01 or p<0.05) between irradiation dose and relative concentration. However, all compounds except 1,3-bis(1,1-dimethylethyl)benzene were not suitable as marker compounds because of their low determination coefficients ($R^2$<0.80) between irradiation dose and their concentrations, and detectablilty in nonirradiated sample. Therefore, only one compound, 1,3-bis(1,1-dimethylethyl)benzene, was tentatively identified as a volatile marker compound to detect irradiated RP.

Comparative analysis of the transcriptomes and primary metabolite profiles of adventitious roots of five Panax ginseng cultivars

  • Lee, Yun Sun;Park, Hyun-Seung;Lee, Dong-Kyu;Jayakodi, Murukarthick;Kim, Nam-Hoon;Lee, Sang-Choon;Kundu, Atreyee;Lee, Dong-Yup;Kim, Young Chang;In, Jun Gyo;Kwon, Sung Won;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.60-68
    • /
    • 2017
  • Background: Various Panax ginseng cultivars exhibit a range of diversity for morphological and physiological traits. However, there are few studies on diversity of metabolic profiles and genetic background to understand the complex metabolic pathway in ginseng. Methods: To understand the complex metabolic pathway and related genes in ginseng, we tried to conduct integrated analysis of primary metabolite profiles and related gene expression using five ginseng cultivars showing different morphology. We investigated primary metabolite profiles via gas chromatography-mass spectrometry (GC-MS) and analyzed transcriptomes by Illumina sequencing using adventitious roots grown under the same conditions to elucidate the differences in metabolism underlying such genetic diversity. Results: GC-MS analysis revealed that primary metabolite profiling allowed us to classify the five cultivars into three independent groups and the grouping was also explained by eight major primary metabolites as biomarkers. We selected three cultivars (Chunpoong, Cheongsun, and Sunhyang) to represent each group and analyzed their transcriptomes. We inspected 100 unigenes involved in seven primary metabolite biosynthesis pathways and found that 21 unigenes encoding 15 enzymes were differentially expressed among the three cultivars. Integrated analysis of transcriptomes and metabolomes revealed that the ginseng cultivars differ in primary metabolites as well as in the putative genes involved in the complex process of primary metabolic pathways. Conclusion: Our data derived from this integrated analysis provide insights into the underlying complexity of genes and metabolites that co-regulate flux through these pathways in ginseng.

Analysis of Pine Nut Oil Composition and Its Effects on Obesity (잣기름 성분분석 및 비만 예방효과 연구)

  • Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Kim, Tae Woo;Choe, Myeon
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.630-635
    • /
    • 2014
  • Pine nut oil (PNO) is well known to impart beneficial effects in overweight individuals, but the mechanisms underlying PNO-mediated weight loss remain unclear. To investigate how PNO promotes weight loss, its composition was determined by gas chromatography coupled with mass spectrometry (GC-MS). In addition, the effects of PNO on cytotoxicity, lipid accumulation, expression of lipid metabolism-related biomarkers, and leptin secretion were assessed in 3T3-L1 cells. GC-MS analyses revealed that PNO contains several components, including linoleic acid, oleic acid, palmitic acid, and stearic acid. Moreover, PNO did not have a cytotoxic effect on 3T3-L1 cells. However, it inhibited the expression of peroxisome proliferator-activated receptor (PPAR) and adipocyte protein 2 (aP2). Finally, PNO significantly increased leptin secretion in a dose-dependent manner. Taken together, these results support the notion that PNO is useful for weight management in overweight individuals.

Evaluation of Freshness of Chicken Meat during Cold Storage Using a Portable Electronic Nose (휴대용 전자코를 이용한 계육의 냉장 중 신선도 평가)

  • Lee, Hoon-Soo;Chung, Chang-Ho;Kim, Ki-Bok;Cho, Byoung-Kwan
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.313-320
    • /
    • 2010
  • The purpose of this study was to evaluate the freshness of chicken meat during 19 d of storage at $4^{\circ}C$ using a portable electronic nose. The portable system consisted of six different metal oxide sensors and a moisture sensor. Determination of volatile compounds with gas chromatography-mass spectrometry, total bacterial count (TBC), and 2-thiobarbituric acid reactive substances (TBARS) monitored the quality change of the samples. These results were compared with the results measured by the electronic nose system. TBC and TBARS measurements could be separated into five groups and seven groups, respectively, among ten groups. According to principal component analysis and linear discriminant analysis with the signals of the portable electronic nose, the sample groups could be clearly separated into eight groups and nine groups, respectively, among ten groups. The portable electronic nose demonstrated potential for evaluating freshness of stored chicken.

Obesity-Associated Metabolic Signatures Correlate to Clinical and Inflammatory Profiles of Asthma: A Pilot Study

  • Liu, Ying;Zheng, Jing;Zhang, Hong Ping;Zhang, Xin;Wang, Lei;Wood, Lisa;Wang, Gang
    • Allergy, Asthma & Immunology Research
    • /
    • v.10 no.6
    • /
    • pp.628-647
    • /
    • 2018
  • Purpose: Obesity is associated with metabolic dysregulation, but the underlying metabolic signatures involving clinical and inflammatory profiles of obese asthma are largely unexplored. We aimed at identifying the metabolic signatures of obese asthma. Methods: Eligible subjects with obese (n = 11) and lean (n = 22) asthma underwent body composition and clinical assessment, sputum induction, and blood sampling. Sputum supernatant was assessed for interleukin $(IL)-1{\beta}$, -4, -5, -6, -13, and tumor necrosis factor $(TNF)-{\alpha}$, and serum was detected for leptin, adiponectin and C-reactive protein. Untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolic profiles in sputum, serum and peripheral blood monocular cells (PBMCs) were analyzed by orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and pathway topology enrichment analysis. The differential metabolites were further validated by correlation analysis with body composition, and clinical and inflammatory profiles. Results: Body composition, asthma control, and the levels of $IL-1{\beta}$, -4, -13, leptin and adiponectin in obese asthmatics were significantly different from those in lean asthmatics. OPLS-DA analysis revealed 28 differential metabolites that distinguished obese from lean asthmatic subjects. The validation analysis identified 18 potential metabolic signatures (11 in sputum, 4 in serum and 2 in PBMCs) of obese asthmatics. Pathway topology enrichment analysis revealed that cyanoamino acid metabolism, caffeine metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, pentose phosphate pathway in sputum, and glyoxylate and dicarboxylate metabolism, glycerolipid metabolism and pentose phosphate pathway in serum are suggested to be significant pathways related to obese asthma. Conclusions: GC-TOF-MS-based metabolomics indicates obese asthma is characterized by a metabolic profile different from lean asthma. The potential metabolic signatures indicated novel immune-metabolic mechanisms in obese asthma with providing more phenotypic and therapeutic implications, which needs further replication and validation.

Changes in volatile flavor compounds of radish fermented by lactic acid bacteria (유산균 발효에 따른 무 발효물의 휘발성 향기 성분 변화)

  • Kim, Boram;Cho, Youn-Jeung;Kim, Moonseok;Hurh, Byungserk;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.324-329
    • /
    • 2019
  • Volatile flavor compounds of radish fermented by lactic acid bacteria were extracted using solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 45 volatile flavor compounds were identified. The volatile flavor compounds in unfermented radish mostly consisted of sulfur-containing compounds (95.85%) and aldehydes (2.61%). While the composition ratio of volatile flavor compounds in radish fermented for two days changed to sulfur-containing compounds (75.53%) and acids (11.12%). As the fermentation period was increased, the contents of dimethyl disulfide, dimethyl trisulfide, diallyl sulfide, diallyl disulfide, and diallyl trisulfide, which have unique garlic and scallion flavor, decreased, and acetic acid and 1-hexanol, which have a sour and fruity flavor, increased. These changes in volatile flavor compounds seemed to have affected the flavor characteristics of fermented radish.

Double Flower Freesia 'Sweet Lemon' with Strong Fragrance (향기가 강한 연노랑색 겹꽃 프리지아 '스윗레몬(Sweet Lemon)' 육성)

  • Choi, Youn Jung;Joung, Hyang Young;Goo, DaeHoe;Kang, Yun Im;Lee, Young Ran
    • FLOWER RESEARCH JOURNAL
    • /
    • v.26 no.4
    • /
    • pp.216-220
    • /
    • 2018
  • Freesia (Freesia hybrida Hort.) 'Sweet Lemon' was developed for the cut flowers in National Institute of Horticultural Herbal Science, Rural Development Administration, Korea in 2015. This hybrid was crossed and selected from 'Teresa' and 'Yvonne' in 2007. Morphological characteristics of the selected freesia hybrid were investigated for 5 years from 2009 to 2014, and then it was named 'Sweet Lemon' in 2015. 'Sweet Lemon' has double and lemon petals (RHS color chart Y2B). The average flower diameter was 6.8 cm and the average yield is 6.7. The growth of the plant is vigorous and the average plant height is 99.0cm, which is 34.7cm higher than the standard cultivar 'Yvonne'. The average floret number per stalk of 'Sweet Lemon' was 10.7, and stalk length was 7.7 cm. The average days to first flowering of 'Sweet Lemon', 126 days, was approximately 20 days earlier than the control cultivar. It's average vase life and yield is 8.7 days and 5.6 cormlets per plant, respectively. Totally 58 of volatile compounds were identified using gas chromatography-mass spectrometry (GC-MS), the major components were linalool, alpha-terpineol, alpha-selinene, and limonene.

Attractiveness of Host Plant Volatiles and Sex Pheromone to the Blueberry Gall Midge (Dasineura oxycoccana) (블루베리혹파리에 대한 기주식물 휘발성 물질과 성페로몬의 유인 효과)

  • Yang, Chang Yeol;Seo, Mi Hye;Yoon, Jung Beom;Shin, Yong Seub;Choi, Byeong Ryeol
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.393-398
    • /
    • 2020
  • The blueberry gall midge, Dasineura oxycoccana (Johnson) (Diptera: Cecidomyiidae), is an emerging pest on cultivated blueberries in Korea. To develop a sensitive tool for monitoring this pest in blueberry orchards, we compared the attractiveness of host plant volatiles and sex pheromone to D. oxycoccana adults. We performed gas chromatography-mass spectrometry (GC-MS) analysis of solid-phase microextraction (SPME)-collected volatiles that were released from blueberry ('Darrow' cultivar). The analysis revealed two major volatiles, cinnamaldehyde and cinnamyl alcohol from flowers; and three major volatiles, β-caryophyllene, germacrene D, and α-farnesene from shoots and young fruits. In field tests conducted in Gunsan, Korea in 2019, commercialized cinnamaldehyde, cinnamyl alcohol, β-caryophyllene, and α-farnesene, used singly or in quaternary combination, were unattractive to the blueberry gall midge. However, traps baited with the known sex pheromone (2R,14R)-2,14-diacetoxyheptadecane attracted significantly more males than the treatments with plant volatiles or the control. No synergistic effect was observed between sex pheromone and plant volatiles. Male D. oxycoccana were captured in the pheromone traps from May to August, with three peaks in mid-May, late June, and late July in Gunsan blueberry fields in 2020.

Transcriptome Analysis of Streptococcus mutans and Separation of Active Ingredients from the Extract of Aralia continentalis (Streptococcus mutans의 전사체 분석과 독활 추출물로부터 활성 성분 분리)

  • Hyeon-Jeong Lee;Da-Young Kang;Yun-Chae Lee;Jeong Nam Kim
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.538-548
    • /
    • 2023
  • The research has been conducted on the isolation of antimicrobial compounds from plant natural extracts and their potential application in oral health care products. This study aimed to investigate the antimicrobial mechanism by analyzing the changes in gene expression of Streptococcus mutans, a major oral pathogen, in response to complex compounds extracted from Aralia continentalis and Arctii Semen using organic solvents. Transcriptome analysis (RNA-seq) revealed that both natural extracts commonly upregulated or downregulated the expression of various genes associated with different metabolic and physiological activities. Three genes (SMU_1584c, SMU_2133c, SMU_921), particularly SMU_921 (rcrR), known as a transcription activator of two sugar phosphotransferase systems (PTS) involved in sugar transport and biofilm formation, exhibited consistent high expression levels. Additionally, component analysis of the A. continentalis extract was performed to compare its effects on gene expression changes with the A. Semen extract, and two active compounds were identified through gas chromatography-mass spectrometry (GC-MS) analysis of the active fraction. The n-hexane fraction (ACEH) from the A. continentalis extract exhibited antibacterial specificity against S. mutans, leading to a significant reduction in the viable cell counts of Streptococcus sanguinis and Streptococcus gordonii among the tested multi-species bacterial communities. These findings suggest the broad-spectrum antibacterial activity of the A. continentalis extract and provide essential foundational data for the development of customized antimicrobial materials by elucidating the antibacterial mechanism of the identified active compounds.