• Title/Summary/Keyword: gas chromatography/mass spectrometry (GC/MS)

Search Result 665, Processing Time 0.028 seconds

The Changes of Aroma in Wine Treated with Reverse Osmosis System (역삼투압 시스템으로 처리한 포도주의 향기성분 변화)

  • Lee, Seung-Ryong;Lee, Kyu-Hee;Chang, Kyu-Seob;Lee, Suk-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.17-24
    • /
    • 2000
  • Reverse osmosis (RO) system was applied to improve wine quality. General wine (GEN) and wines containing different sugar levels $24^{\circ}Brix$ (RO-24) and $24^{\circ}Brix$ (RO-28) by removing pure water using RO system without sugar addition on brewing method. And they were compared by wine aroma analysis. The preparing method of analysis was LLCE (liquid-liquid continuous extraction). And volatile aroma compounds of different wines were prepared for raw, and diluted materials in same proportion. The wine aromas were described by trained twelve panelists for QDA (quantitative descriptive analysis) and showed for FD (flavor dilution)-chromatogram. Consequently, overall acceptability of RO-28 showed better than that of other treatments. Aromas of RO-28 also were represented the high contents of positive aroma compounds such as ethanol and ethyl acetate, which were identified by GC-O and GC-MS.

  • PDF

Comparative Analysis of Volatile Flavor Compounds from Zanthoxylum pipperitum A.P. DC

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • The volatile flavor components of Zanthoxylum pipperitum A.P. DC. produced in Korea and China were isolated using a Clevenger-type apparatus by steam distillation extraction, and analyzed by gas chromatography-mass spectrometry (GC/MS). The yields of oils from Korean and Chinese Z. pipperitum A.P. DC. were 2.0 and 1.2% (w/w), respectively. From the two Z. pipperitum A.P. DC. oils, sixty and fifty-four volatile flavor compounds were tentatively identified, and they constituted 94.78 and 87.34% of the total peak area, respectively. Piperitone(p-menth-1-en-3-one) (13.48%) was the most abundant compound in the Chinese Zanthoxylum pipperitum A.P. DC. oil, followed by $\beta$-phellandrene, sabinene, terpinen-4-ol and linalool (each >5%). Whereas, the most abundant compound in the Korean Zanthoxylum pipperitum A.P. DC. oil was limonene (18.04%), followed by geranyl acetate, cryptone, citronellal, cuminal and phellandral (each >5%).

Chemical Components of Atractylodes japonica Rhizome Oil

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.147-151
    • /
    • 2010
  • The volatile aroma constituents of Atractylodes japonica rhizome were separated by steam distillation extraction method using a Clevenger-type apparatus, and analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of the essential oil from Atractylodes japonica was 1.0% (v/w), and its color was pale yellow. Forty-five volatile flavor compounds, which make up 93.86% of the total peak area, were tentatively identified in the rhizome oil. The oil contained 32 hydrocarbons (79.19%) with sesquiterpene hydrocarbon predominating, 3 esters (12.46%), 4 alcohols (0.11%), 1 ketone (0.01%), 2 aldehydes (0.02%), and 3 miscellaneous compounds (2.07%).

Volatile Aroma Composition of Chrysanthemum indicum L. Flower Oil

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.122-127
    • /
    • 2008
  • The aroma constituents of Chrysanthemum indicum L. were separated by the hydro distillation extraction method using a Clevenger-type apparatus, and were analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of Chrysanthemum indicum L. flower oil was 2.0% (w/w) and the color was light golden yellow. Sixty-three volatile flavor components, which make up 89.28% of the total aroma composition of the flower oil, were tentatively characterized. This essential oil contained 35 hydrocarbons (48.75%), 12 alcohols (19.92%), 6 ketones (15.31%), 3 esters (4.61%), 5 aldehydes (0.43%), 1 oxide (0.22%), and 1 miscellaneous component (0.04%). ${\alpha}$-Pinene (14.63%), 1,8-cineol (10.71%) and chrysanthenone (10.01%) were the predominant volatile components in Chrysanthemum indicum L., an aromatic medicinal herbaceous plant.

Comparison of Volatile Aroma Components from Saussurea lappa C.B. Clarke Root Oils

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.128-133
    • /
    • 2008
  • The volatile flavor components were isolated from the roots of Saussurea lappa C.B. Clarke produced in Korea and China by the hydro distillation, and were analyzed by gas chromatography-mass spectrometry (GC/MS). 63 aroma compounds representing 87.47% of the total peak area were tentatively identified, including 13 alcohols (22.56%), 26 hydrocarbons (21.78%), 4 aldehydes (21.24%), 11 ketones (18.04%), 1 oxide (0.52%), 3 esters (0.16%), 1 carboxylic acid (0.02%) and 4 miscellaneous components (3.15%). 46 volatile flavor components of imported S. lappa C.B. Clarke constituted 65.69% of the total volatile composition were tentatively characterized, consisting of 1 aldehyde (23.32%), 24 hydrocarbons (16.69%), 10 ketones (15.84%), 7 alcohols (8.92%), 1 oxide (0.83%), 2 esters (0.07%) and 1 acid (0.02%). The predominant components of both essential oils were (7Z,10Z,13Z)-7,10,13-hexadecatrienal and dehydrocostuslactone.

Characterization of Chlorinated NR using Pyrolytic Technique

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • Vehicle wiper blades are typically treated with chlorine to lower their friction coefficient with the windshield surface. In this study, a chlorinated, natural rubber (NR) vehicle wiper blade was characterized using a pyrolytic technique. Unchlorinated and chlorinated wiper blades were pyrolyzed and the pyrolysis products were analyzed using gas chromatography/mass spectrometry (GC/MS). Besides isoprene and dipentene, the other principal pyrolysis products such as 1,5,8-p-menthatriene (MTT) and p,α-dimethylstyrene (DMS) were observed. The MTT and DMS ratios did not vary for the chlorinated nor unchlorinated samples when the entire rubber lip of the wiper blade was pyrolyzed. However, when only the lip surface of the wiper blade rubber was pyrolyzed (via scratching with a knife) the relative ratios of the chlorinated sample were much greater than those of the unchlorinated sample. As MTT is produced from the conjugated backbone of chlorinated NR that forms through HCl elimination during initial pyrolysis, and DMS is generated by the dehydrogenation of MTT, these two products could be used as markers for detecting chlorinated NR.

Acute cocaine intoxication in a body packer

  • Park, Mee-Jung;Lim, Mi-Ae;Chung, Hee-Sun
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.103-106
    • /
    • 2006
  • A 35-year-old Perubian who suffered from grand mal seizures died in the aircraft on his way from the United States to Hongkong via Incheon international airport of Korea. While performing the autopsy, 115 packs made with double layer of transparent film and black plastic bag containing cocaine were found in the ileum and large intestine. Among of them, 3 packs were ruptured. To determine the concentration of cocaine and its metabolites, blood, urine, bile, liver, spleen, heart, kidney, brain and gastric contents were taken and toxicological analysis was performed. Gas chromatography/mass spectrometry (GC/MS) following liquid-phase extraction using chloroform:isopropanol (=9:1) and derivatization with bis(trimethylsilyl)-trifluoroacetamide (contains 1% trimethylchlorosilane) was performed. High levels of cocaine, benzoylecgonine (BE) and ecgonine methylester (EME) were found in the postmortem blood (0.96, 3.09 and $5.59{\mu}g/mL$) and urine (32.85, 145.35 and $53.17{\mu}g/mL$), respectively. Cocaine and its metabolites were also detected in all other biological specimen.

Evaluation of physicochemical and biological properties of python fat (Python bivittatus)

  • Pham Thi Quyen;Le Pham Tan Quoc
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.758-769
    • /
    • 2023
  • The main aim of this study was to determine python fat's several physicochemical properties, including dimensions, color, structure, acid value (AV), saponification value (SV), density, and recovery efficiency. The optimum yield obtained was approximately 80.40% at 180℃ for 60 min with an AV of 0.3366 and SV of 179.56 mg KOH/g. Fatty acids, comprising oleic acid (72.462%), palmitic acid (26.243%), linolenic acid (0.835%), and myristic acid (0.459%), were identified using gas chromatography-mass spectrometry (GC-MS). The python fat had a very weak antioxidant capacity and almost no antibacterial ability with gram-positive (Staphylococcus aureus - ATCC 25923 and Bacillus cereus - ATCC 10876) and gram-negative (Escherichia coli - ATCC 25922 and Salmonella enterica - ATCC 35664) bacteria (used the paper disc diffusion method for antibiotic susceptibility testing). Moreover, python fat is considered to be very resistant to high temperatures.

Determination of benzophenone in water, soil and sediment by gas chromatography/mass spectrometry (기체크로마토그래피/질량분석기에 의한 수질, 토양 및 저질 시료중의 benzophenone 분석법에 관한 연구)

  • Jeon, Hee Kyung;Choi, Hae Yeon;Ryu, Jae-Chun
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.147-153
    • /
    • 2005
  • Benzophenone (BP) which is one of endocrine disrupting chemicals is suspected to contaminate waters (river, lake and industrial drainage) and soils (ground soil and sediment). Analytical method for determination of BP in soil and water was developed by gas chromatography/mass spectrometry. Water sample (100 mL) was extracted with n-hexane, and soil (10 g) was extracted with methanol and n-hexane. Recovery for BP was >71.4% in water and 86.5-94.7% in soil with coefficient variation of less than 19.8%. Calibration curves showed a good linearity ($r^2$ >0.998). In water, soil and sediment collected at nation-wide sites, BP was detected at 5 sites among 43 water sites at the concentration range of 30-200 ng/L. No BP was found in the soil and sediment samples. It is suggested that this method will be useful to the determination of BP in the environmental matrices such as waters, soils and sediments in minute quantities.

Flavor Components of the Needle Oils from Pinus rigida Mill and Pinus densiflora Sieb & Zucc (리기다송(Pinus rigida Mill)과 적송(Pinus densiflora Sieb & Zucc)잎 정유의 향기성분)

  • Choi, Kyoung-Sook;Park, Hyoung-Kook;Kim, Jung-Han;Kim, Yong-Taik;Kwon, Ik-Boo
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.769-773
    • /
    • 1988
  • The needle oils of Pious rigida Mill and Pious densiflora Sieb & Zucc were analyzed by gas chromatography/mass spectrometry. The major components of Pinus rigida were ${\alpha}-pinene$, 1-hexen-3-ol formate, sabinene, ${\beta}-pinene,\;{\alpha}-terpineol$ and ${\beta}-caryophyllene,\;{\alpha}-pinene$, bornyl acetate, ${\beta}-pinene$ and ${\beta}-hpellandrene$ were the major components fo Pious densiflora. Pious densiflora had sweeter and more greenish note than Pines rigida because the bornyl acetate content of Pious densiflora was about three times more than that of Pious rigida.

  • PDF