• Title/Summary/Keyword: gas bearing

Search Result 245, Processing Time 0.025 seconds

Performance Predictions of Gas Foil Journal Bearing with Shim Foils (심포일을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Hwang, Sung Ho;Moon, Chang Gook;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.107-114
    • /
    • 2018
  • This paper presents a computational model of a gas foil journal bearing with shim foils between the top foil and bumps, and predicts its static and dynamic performance. The analysis takes the previously developed simple elastic foundation model for the top foil-bump structure and advances it by adding foil models for the "shim foil" and "outer top foil." The outer top foil is installed between the (inner) top foil and bumps, and the shim foil is installed between the inner top foil and outer top foil. Both the inner and outer top foils have an arc length of $360^{\circ}$, but the arc length of the shim foil is shorter, which causes a ramp near its leading edge in the bearing clearance profile. The Reynolds equation for isothermal and isoviscous ideal gas solves the hydrodynamic pressure that develops within the bearing clearance with preloads due to the ramp. The centerline pressure and film thickness predictions show that the shim foil mitigates the peak pressure occurring at the loading direction, and broadens the positive pressure as well as minimum film thickness zones except for the shortest shim foil arc length of $180^{\circ}$. In general, the shim foil decreases the journal eccentricity, and increases the power loss, direct stiffness, and damping coefficients. As the shim foil arc length increases, the journal eccentricity decreases while the attitude angle, minimum film thickness, and direct stiffness/damping coefficients in the horizontal direction increase.

Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps (범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석)

  • Kim, T.H.;Mun, H.W.
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

Synchronous Vibration Control of a Rigid Rotor System using Active Air Bearing

  • Kwon, Tae-Kyu;Qiu, Jin-Hao;Tani, Jun-Ji;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.87-94
    • /
    • 2002
  • This paper presents the synchronous vibration control of a rotor system using an Active Air Bearing(AAB). In order to suppress the synchronous vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by the pivots containing piezoelectric actuators and their radial positions can be actively controlled by applying voltage to the actuators. Disturbances and various kinds of external forces can cause the shaft vibration as well as the change of the air film thickness. The dynamic behaviors of a rotary system supported by two tilting-pad gas bearings and its active stabilization using the tilting-pads as actuators are investigated numerically. The PID controller is applied to the tilting-pad gas bearing system with three pads, two of which contain piezoelectric actuators. To test the validity of the theoretical method, the performance of this control method is evaluated through experiments. The experimental results show the effectiveness of the control system for suppressing the unbalanced response of the rigid modes.

PID Control of a Synchronous Rotor System Vibration with Active Air Bearing (능동 공기 베어링에 의한 로터계 동기진동의 PID제어)

  • Gwon, Dae-Gyu;Lee, Yeong-Chun;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.32-39
    • /
    • 2001
  • This paper presents the synchronous vibration control of a rotor system using an Active Air Bearing(AAB). In order to suppress the synchronous vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by the pivots containing piezoelectric actuators and their radial positions can be actively controlled by applying voltage to the actuators. Disturbances and various kinds of external force can cause the shaft vibration as well as the change of the air film thickness. The dynamic behaviors of a rotary system supported by two tilting-pad gas bearings and its active stabilization using the tilting-pads as actuators are investigated numerically. The PID controller is applied to the tilting-pad gas bearing system with three pads, two of which contain piezoelectric actuators. To test the vapidity of the theoretical method, the performance of this control method is evaluated through experiments. The experimental results show the effectiveness of the control system for suppressing the unbalanced response of the rigid modes.

  • PDF

Structural Analysis on the Heavy Duty Diesel Engine and Optimization for Bearing Cap (대형 디젤엔진의 구조응력해석 및 베어링 캡의 최적설계)

  • Lee, Jae-Ok;Lee, Young-Shin;Lee, Hyun-Seung;Kim, Jae-Hoon;Jun, Joon-Tak;Kim, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.402-410
    • /
    • 2008
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. In this study, a three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis. The FE model of the heavy duty diesel engine main parts consisting with four half cylinder was selected. The heavy duty diesel engine parts includes with cylinder block, cylinder head, gasket, liner, bearing cap, bearing and bolts. The loading conditions of engine were pre-fit load, assembly load, and gas load. As the results of structural analysis, because the stress values of cylinder block and bearing cap did not exceed the basic design can be satisfied. But on the part which contacts with cylinder block and bearing cap the stress value exceeds the allowable strength of material. In order to decrease the stress at that part, it was optimized with parametric study.

Seismic Amplitude and Frequency Characteristics of Gas hydrate Bearing Geologic Model (가스 하이드레이트 지층 모델의 탄성파 진폭 및 주파수 특성)

  • Shin, Sung-Ryul;Lee, Sang-Cheol;Park, Keun-Pil;Lee, Ho-Young;Yoo, Dong-Geun;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2008
  • In gas hydrate survey, seismic amplitude and frequency characteristics play a very important role in determining whether gas hydrate exists. According to the variation of source frequency and scatterer size, we study seismic amplitude characteristics using elastic modeling applied at staggered grids. Generally speaking, scattering occurs in proportion to the square of source frequency and the scatterer volume, which has an effect on seismic amplitude. The higher source frequency is, the more scattering occurs in gas hydrate bearing zone. Therefore, BSR is hardly observed in high frequencies. On the other side, amplitude blanking zone and BSR is clearly observed in lower frequencies although the resolution is poor as a whole. Seismic reflections traveling through free-gas layer below gas hydrate bearing zone decay so severely a high frequency component that a low frequency term is dominant. Amplitude anomaly of BSR result from high acoustic impedance contrast due to free-gas, which is a very crucial factor to estimate gas hydrate bearing zone. Seismic frequency analysis is carried out using wavelet transform method that frequency component could be decomposed with time variation. In application of wavelet transform to the seismic physical experiments data, we can observe that reflections traveling through air layer, which corresponds to the free-gas layer, decay a high frequency component.

Performance Evaluation of Compressor to Develop 500W Class Ultra-Micro Gas Turbine (500W급 초소형 가스터빈 개발을 위한 압축기 성능 평가)

  • Seo, JeongMin;Park, Jun Young;Choi, Bum Seok;Park, Moo Ryong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.51-57
    • /
    • 2012
  • Performance evaluation of a compressor is conducted to develop 500W class ultra-micro gas turbine (UMGT) for power generation. The performance evaluation is essential to check the performance of the components of UMGT, a radial turbine, a centrifugal compressor, an angular combustor and a shaft, which have been already designed in previous researches. The purpose of this study is to introduce the development process of the performance testing equipments of the UMGT and to present the results of compressor performance test. For the performance evaluation of the compressor, two test equipments are developed and the initial test equipment uses commercial static air bearings with long shaft. In the improved test equipment, static air bearing is improved to increase rotating speed and compressed nitrogen gas is used for utility gas of the static air bearing to supply compressed air in a stable and steady way. To increase rotating speed to 320,000 rpm, 80% speed of design speed, compressed air is provided to the turbine. The performance map of the compressor with the 50%, 60%, 70%, 80% speed of design point is presented. The results of the performance test of compressor show a good agreement with the results of 3D CFD.

Active control of the Self-excited Vibration of a Rotor System Supported by Tilting-Pad Gas Bearing (틸딩 패드 기체 베어링으로 지지된 로터 계 자려 진동의 능동제어)

  • Kwon, Tae-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.119-125
    • /
    • 2001
  • This paper presents an experimental study on active control of self-excited vibration for a high speed turbomachinery. In order to suppress the self-excited vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by pivots containing piezoelectric actuators and their radial position can be actively controlled by applying voltage to the actuators. The transfer characteristics from actuator inputs to shaft vibration outputs are experimentally investigated. In a tilting-pad gas bearing (TPGB), a shaft is supported by the pressurized air film. Four gap sensors were used to measure the vibration of the shaft and PID was used in the feedback control of the shaft vibration. The experimental results show that the self-excited vibration of the rotor can be effectively suppressed if the PID controller gains are properly chosen. As a result we find that the feedback control is effective for suppressing the self-excited vibration of a rotor system using stack-type PZT actuators.

  • PDF

A Case Study of Test Production of Gas from Hydrate Bearing Sediments on Nankai Trough in Japan (일본 난카이 해구 가스하이드레이트 퇴적층으로부터의 가스 시험생산 사례분석)

  • Kim, A-Ram;Lee, Jong-Won;Kim, Hyung-Mok
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Gas hydrate is a solid substance composed of natural gas constrained in water molecules under low temperature and high pressure conditions. The existence of hydrates has been reported to be world-widely distributed, mainly at permafrost and deep ocean floor. Test productions of small amount of natural gas from the on-shore permafrost have been accomplished in U.S.A and Canada, but, world-first and the only production case from off-shore hydrate bearing sediments was in Nankai trough, Japan. In this study, we introduce key technologies in gas production from hydrates by analyzing the Japanese off-shore gas production project in Nankai trough in terms of depressurization- induced dissociation so as to utilize planned domestic gas production test in Ulleung basin.

Dynamic Behavior Analysis of Rotor-Bearing System for Rotary Compressor (로터리 압축기 회전체-베어링계의 동적 거동해석)

  • 김태학
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.244-251
    • /
    • 1999
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric rotation parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coef-ficients of the lubrication oil film are not constant in the bearings. in this paper the program for predicting the behaviors of rotor-journal bearing system of rotary compressor is developed. Finite element modeling is used to analyze the flexible rotor. The numerical results are compared with experimental results.

  • PDF