• Title/Summary/Keyword: gas analyzer

검색결과 481건 처리시간 0.027초

OF 케이블 Gas 검출을 위한 광흡수 스펙트럼 분석장치 구현에 관한 연구 (A study on the implementation of optical absorption spectrum analyzer for detecting gases in OF power cable)

  • 오상기;강동식;김요희;강욱;류희석;박해수;노종대
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2450-2452
    • /
    • 1999
  • Presently, it is now developing the optical remote gas sensor system which can measure combustible gases such as $CH_4$ and $C_2H_2$ generating by partial discharges inside the cable and connection parts to detect thermal deterioration of Oil-Filled (OF) power cable at the appropriate time. It is the most important parameter to select central wavelength of laser diode (LD) by analyzing the absorption bend of measuring gases in the infrared region. In this research, we proposed the optical spectrum analyzer to absorption band of $CH_4$ and $C_2H_2$ for the preliminary research of optical fiber gas detecting system.

  • PDF

고분자 감웅성 LB막을 이용한 One-channel 가스센서의 개발연구 (A Study on Development of One-channel Gas Sensor Using Polymeric Sensitive LB Films)

  • 강현욱;김정명;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.261-263
    • /
    • 1996
  • The study on the development of one-channel gas sensor using the quartz crystal analyzer were attempted. The adsorption and desorption behavior of organic gases were investigated using the resonant frequency and resistance method of quartz crystal. The sensitive materials were deposited on the quartz crystal analyzer(QCA) by using Langmuir-Blodgett method. To investigate the response characteristics of organic vapours and response mechanism, resonant frequency-resonant resistance (F-R) diagram was used. In our experimental results, the response mechanism between sensitive LB film and organic vapours was obtained using F-R diagram. And the position of each organic vapour were different as to the kind and injection amount. Thus F-R diagram can be applied to one-channel gas sensor using the QCA and useful to analyze the response mechanism between organic vspours and sensitive LB films.

  • PDF

Development of High-Sensitivity Ion Sources for Residual Gas Analyzer

  • 박창준;한철수;안상정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.104.2-104.2
    • /
    • 2013
  • A residual gas analyzer (RGA) system has been developed in this laboratory. Characteristics of the RGA system parts such as ion source, quadrupole mass filter and sensitivity are introduced. Some efforts have been made to improve performance of the two types of ion sources, open ion source (OIS) and closed ion source (CIS). A metal mesh was placed onto the electron beam entrance of the CIS anode tube to block the filament field penetration. Sensitivity of the CIS ion sources with and without the mesh was compared by mass spectra of SF6 gas (97% He base) introduced into the CIS anode through a needle valve. About ten-times improvement in the RGA sensitivity was observed for the CIS with the mesh in the electron entrance. Computer simulation showed an axi-symmetric anode potential distribution and improved focusing of the electron beam inside the anode tube with the mesh.

  • PDF

NUMERICAL ANALYSIS OF A SAMPLING MODULE FOR A FAST RESPONSE EXHAUST GAS ANALYZER

  • Kim, W.S.;Lee, J.H.;Yoo, J.S.;Rhee, B.O.;Park, J.I.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.149-154
    • /
    • 2007
  • The engine behavior in a transient condition is important to not only emission regulations but also fuel economy. A fast response gas analyzer can be a useful tool to investigate exhaust gas in a transient operation. It should be designed to analyze gas concentration with a short time constant by a fast sampling module and an appropriate measuring method for each emission element. In this study, a new fast sampling module is introduced and flow analysis is performed by numerical simulation. The analysis has shown the proper operating condition and the sensitivity of the module for practical application. Calculated flow to the sampling module has $0.5{\sim}4%$ error, while backflow toward the expansion tube is expected when pressure in CP (Constant Pressure) chamber is over 0.6 bar. For a stable supply of flow to the optical cell, sample gas pressure should be in the range, $0.35{\sim}1.90$ bar, when the pressure in the CP camber and the optical cell are 0.2 bar and 0.158 bar, respectively.

광촉매시멘트의 배기가스 저감 특성에 관한 연구 (A Study on the Properties of Waste Gas Reduction in the Photocatalytic Cement)

  • 이원암;양진;유재상;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.355-360
    • /
    • 2003
  • Recently, a cement plays an important roll in the materials field. So, in this research we would like to study on the properties of waste gas reduction in the photocatalytic cement. The fundamental phenomena of waste gas reduction in the photocatalytic cement were observed by the NOx analyzer with reaction chamber, UV Lamp, MFC, and humidity control bath. As a result of this study, the photocatalytic cement used photocatalytic powder, admixture and other materials can obtain NOx gas reduction and its photocatalytic efficiency. Developing for the photocatalytic cement, we need a various study.

  • PDF

목질계 바이오매스로부터 가스화에 의한 합성가스 제조 연구 (Synthesis Gas Production from Gasification of Woody Biomass)

  • 조원준;모용기;송택용;백영순;김승수
    • 한국수소및신에너지학회논문집
    • /
    • 제21권6호
    • /
    • pp.587-594
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas has played an important role of synthesizing the valuable chemical compounds, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuel and chemicals. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C$/min in thermogravimetric analysis. Bubbling fluidized bed reactor was used to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, $CO_2$, $H_2$ and a small fraction of $C_1-C_4$ hydrocarbons.

고분자전해질형 연료전지 가스확산층의 탄소 부식에 관한 실험적 분석 (Experimental Study on Carbon Corrosion of Gas Diffusion Layer in PEM Fuel Cell)

  • 하태훈;조준현;박재만;민경덕;이은숙;정지영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.76.1-76.1
    • /
    • 2010
  • Recently, many efforts to solve the durability problem of PEM fuel cell are carried on constantly. However, despite this attention, durability researches of gas diffusion layer (GDL) are not much reported yet. Generally, GDL of PEM fuel cell experiences three external attacks, which are dissolution of water, erosion of gas flow, corrosion of electric potential. In this study, among these degradation factors, carbon corrosion of electric potential was focused and investigated with accelerated carbon corrosion test. Through the test, it is confirmed that carbon corrosion occurred at GDL, and corroded GDL decreased a performance of operating fuel cell. The property changes of GDL were measured with various methods such as air permeability meter, pore distribution analyzer, thermo gravimetric analyzer, and tensile stress test to discover the effects of carbon corrosion. Carbon corrosion caused not only loss of weight and thickness, but also degradation of mechanical strength of GDL. In addition, to analysis the reason of GDL property changes, a surface and a cross section of GDL were observed with scanning electron microscope. After 100 hours test, the GDL showed serious damage in center of layer.

  • PDF

액상/기상중 전기선 폭발법을 이용한 은 나노유체의 제조 및 특성평가에 관한 연구 (Synthesis and Characterization of Silver Nanofluid Using Pulsed Wire Evaporation Method in Liquid-Gas Mixture)

  • 김창규;이경자;이창규
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.468-472
    • /
    • 2009
  • The silver nanofluids were synthesized by the pulsed wire evaporation (PWE) method in a liquid-gas mixture. The size and microstructure of nanoparticles in the deionized water were investigated by a particle size analyzer (PSA), transmission electron microscope (TEM), and scanning electron microscope (SEM). Also, the synthesized nanofluids were investigated in order to assess the stability of dispersion of nanofluid by the zetapotential analyzer and dispersion stability analyzer. The results showed that the spherical silver nanoparticle formed in the deionized water and mean particle size was about 50 nm. Also, when explosion times were in the range of 20$\sim$200 times, the absolute value of zeta potential was less than -27 mV and the dispersion stability characteristic of low concentration silver nanofluid was better than the high concentration silver nanofluid by turbiscan.

천연가스와 바이오매스로부터 개선된 DME 공정의 개발 (Development of Innovation DME Process from Natural Gas and Biomass in KOREA)

  • 조원준;송택용;백영순;김승수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.107-107
    • /
    • 2010
  • Hydrogen is an alternative fuel for the future energy which can reduce pollutants and greenhouse gases. Synthesis gas have played an important role of synthesizing the valuable chemical compound, for example methanol, DME and GTL chemicals. Renewable biomass feedstocks can be potentially used for fuels and chemical production. Current thermal processing techniques such as fast pyrolysis, slow pyrolysis, and gasification tend to generate products with a large slate of compounds. Lignocellulose feedstocks such as forest residues are promising for the production of bio-oil and synthesis gas. Pyrolysis and gasification was investigated using thermogravimetric analyzer (TGA) and bubbling fluidized bed gasification reactor to utilize forest woody biomass. Most of the materials decomposed between $320^{\circ}C$ and $380^{\circ}C$ at heating rates of $5{\sim}20^{\circ}C/min$ in thermogravimetric analysis. Bubbling fluidized bed reactor were use to study gasification characteristics, and the effects of reaction temperature, residence time and feedstocks on gas yields and selectivities were investigated. With increasing temperature from $750^{\circ}C$ to $850^{\circ}C$, the yield of char decreased, whereas the yield of gas increased. The gaseous products consisted of mostly CO, CO2, H2 and a small fraction of C1-C4 hydrocarbons.

  • PDF

노즐 형상 및 입경에 따른 난류 분류중의 미립자 유동 특성에 관한 연구 (A Study of Particle Motion for Nozzle Geometry and Particle Diameter in Turbulent Jet Flow)

  • 김종철;황승식;전운학
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.17-31
    • /
    • 1999
  • This paper is a review of the results of examining the flow characteristics of gas and particles with regards to pipe-type nozzle and converging nozzles depending on nozzle geometry. The nozzles used in this experiment are the pipe-type nozzle which can sufficiently mix the gas and particles, and the converging nozzle which can rapidly accelerate fluid . The particles used at the time of this experiment each measured 0.8, 30, 60 and 80${\mu}{\textrm}{m}$ in the diameter. The Phase Doppler Particle Analyzer was used to measure the velocity of each particle, and the Hot-wire probe was used to measure the spectrum in order to analyze the flow near the nozzle exit of the 0.8${\mu}{\textrm}{m}$ particle.

  • PDF