• Title/Summary/Keyword: gas analyzer

Search Result 481, Processing Time 0.033 seconds

Development of Simple Test Method using VOC Analyzer to Measure Volatile Organic Compounds Emission for Particleboards (VOC Analyzer를 이용한 파티클보드로부터 방산되는 휘발성유기화합물의 간이 측정방법 개발)

  • An, Jae-Yoon;Kim, Sumin;Kim, Jin-A;Kim, Hyun-Joong;Mun, Suck-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.22-30
    • /
    • 2006
  • The volatile organic compound (VOC) Analyzer is a portable device to measure the four main aromatic hydrocarbon gases: toluene, ethylbenzene, xylene and styrene. With the VOC Analyzer, a semiconductor gas sensor eliminates the need for the carrier gas which is required for conventional gas chromatographs. In addition, since the semiconductor gas sensor is supersensitive to gas components, it is not necessary to use a conventional gas concentrator or other complicated equipment. Compared with other measurement methods, the VOC analyzer is useful for measuring toluene, ethylbenzene, xylene and styrene in wood-based panel because of its ease in obtaining field results and repeating the test. The VOC Analyzer primarily measures four VOC in the air. In this study, we designed a test method of VOC measurement for particle board. A specimen was sealed in 3L polyester bag, after 96hours we could measure maximum VOC emission level that is a stabilized VOC Value. For easy, fast and economic testing of TVOC emission from wood-based panel, we developed the test method with the VOC Analyzer. The VOC Analyzer is expected to gain widespread use in the manufacturing field where a quick and easy test for VOC emission from wood-based panel is required. Furthermore, the VOC Analyzer promises to become an easier, faster and more economic technique than the currently used standard methods.

Silicon Etching Process of NF3 Plasma with Residual Gas Analyzer and Optical Emission Spectroscopy in Intermediate Pressure (잔류가스분석기 및 발광 분광 분석법을 통한 중간압력의 NF3 플라즈마 실리콘 식각 공정)

  • Kwon, Hee Tae;Kim, Woo Jae;Shin, Gi Won;Lee, Hwan Hee;Lee, Tae Hyun;Kwon, Gi-Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.97-100
    • /
    • 2018
  • $NF_3$ Plasma etching of silicon was conducted by injecting only $NF_3$ gas into reactive ion etching. $NF_3$ Plasma etching was done in intermediate pressure. Silicon etching by $NF_3$ plasma in reactive ion etching was diagnosed through residual gas analyzer and optical emission spectroscopy. In plasma etching, optical emission spectroscopy is generally used to know what kinds of species in plasma. Also, residual gas analyzer is mainly to know the byproducts of etching process. Through experiments, the results of optical emission spectroscopy during silicon etching by $NF_3$ plasma was analyzed with connecting the results of etch rate of silicon and residual gas analyzer. It was confirmed that $NF_3$ plasma etching of silicon in reactive ion etching accords with the characteristic of reactive ion etching.

Development of a Fast-Response $CO_2$ Analyzer using NDIR Technique and Its Application to SI Engine (비분산 적외선 흡수법을 이용한 고속응답 $CO_2$ 분석기의 제작 및 엔진 적용에 관한 연구)

  • Lee, Jae-Young;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.102-107
    • /
    • 2007
  • A fast response $CO_2$ ($fCO_2$) analyzer for real-time measurement of carbon dioxide concentration during transient states of internal combustion engines has been developed. This analyzer uses non-dispersive infrared absorption (NDIR) technique for measuring $CO_2$ concentration and Kalman filter for removing noise components from output signals. The analyzer has good linearity, repeatability and drift with a response time of 11 ms; it is sufficiently fast to detect $CO_2$ concentration during transient states of internal combustion engines. The $fCO_2$ analyzer was used to measure transient $CO_2$ concentration of exhaust gas of the SI engine with a standard gas analyzer, and the signal of the $fCO_2$ analyzer was compared to that of the standard gas analyzer. The two concentrations were well matched during the steady state, and the $fCO_2$ analyzer could measure the variations of $CO_2$ concentration during the transient state.

Development of Fast-Response CO2 Analyzer and Analysis of Engine-out Emission during Cold Start of SI Engine (고속응답 CO2 분석기의 제작 및 이를 이용한 SI엔진에서의 실시간 배기가스 분석에 관한 연구)

  • Song, Hyun-Soo;Park, Kyoung-Seok;Park, Dong-Sun;Min, Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • A fast-response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of a SI engine. The analyzer consists of the non-dispersive infrared absorption method, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it showed 18ms of a response to measure the $CO_2$ concentration. The fast-response $CO_2$ analyzer was applied to a single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for confirming the accuracy of the exhaust gas analysis using the fast-response $CO_2$ analyzer. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated from the $CO_2$ concentration of engine-out emissions and engine operating variables.

Development of Portable Dissolved Gas Analyzer Using photoacoustic spectroscopy (광음향 분광법을 이용한 휴대용 유중가스분석장치 개발)

  • Kim, Choon-Dong;Kim, Chol-Gyu;Park, Sh-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2431-2438
    • /
    • 2013
  • The paper presents a procedure for how to development and theoretical review on Dissolved Gas Analyzer. the information of abnormal thermal stress on electrical power equipment by testing the gas is validated to easy by the gas analyzer presented in the paper. the analyzed information is used to evaluate the stability of electrical power equipment. the existing and selling DGA(dissolved gas analyzer) is so expensive and vast that all DGA product comes from foreign country. The objective of the paper is to prove that PAS(photoacoustic spectroscopy) based on a compact portable DGA solve the fixed type of DGA in order to eliminate the occurring issue directly or indirectly. the proposed DGA is easy to handle, and this can also analysis in real time for testing electrical power equipment. By applying the proposed portable, DGA be utilized in the currently electrical power equipment that are being implemented to reduce cycle of analysis of dissolved gas, it can contribute to improving safety by providing the agility of the evaluation of degradation.

MEASUREMENT OF $CO_2$ CONCENTRATION AND A/F RATIO USING FAST NDIR ANALYZER ON TRANSIENT CONDITION OF SI ENGINE

  • Lee, S.W.;Kim, W.S.;Lee, J.H.;Park, J.I.;Yoo, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.385-390
    • /
    • 2006
  • A fast response $CO_2$ analyzer has been developed to study transient characteristics on an SI engine. The analyzer has the delay time of 4.5 ms and time constant of 2.8 ms, which is fast enough to measure $CO_2$ concentration on a transient condition. Wide range of A/F(Air/Fuel) ratio can be estimated using the analyzer with an additional switch type oxygen sensor. The results of measurement of $CO_2$ concentration and A/F ratio on a transient condition including rapid acceleration/deceleration and EGR(Ehxaust Gas Recirculation) on/off are presented and compared with a commercial exhaust gas analyzer and UEGO(Universial Exhaust Gas Oxyzen) sensor.

A Study on LNG Quality Analysis using a Raman Analyzer (라만분석기를 이용한 LNG 품질 분석 실증 연구)

  • Kang-Jin Lee;Woo-Sung Ju;Yoo-Jin Go;Yong-Gi Mo;Seung-Ho Lee;Yoeung-Chul Kim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.70-79
    • /
    • 2024
  • Raman analyzer is an analytical technique that utilizes the "Raman effect", which occurs when light is scattered by the inherent vibrations of molecules. It is used for molecular identification and composition analysis. In the natural gas industry, it is widely used in bunkering and tank lorry fields in addition to LNG export and import terminals. In this study, a LNG-specific Raman analyzer was installed and operated under actual field conditions to analyze the composition and principal properties (calorific value, reference density, etc.) of LNG. The measured LNG composition and calorific value were compared with those obtained by conventional gas chromatograph that are currently in operation and validated. The test results showed that the Raman analyzer provided rapid and stable measurements of LNG composition and calorific value. When comparing the calorific value, which serves as the basis for LNG transactions, with the results from conventional gas chromatograph, the Raman analyzer met the acceptable error criteria. Furthermore, the measurement results obtained in this study satisfied the accuracy criteria of relevant international standards (ASTM D7940-14) and demonstrated similar outcomes compared to large-scale international demonstration cases.

Development of Fast-Response $CO_2$ Analyzer and Analysis of Engine-out Emission during Transient Condition of SI engine (고속응답 $CO_2$ 분석기의 제작 및 이를 이용한 SI 엔진에서의 실시간 배기가스 분석에 관한 연구)

  • Song, Hyun-Soo;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3079-3084
    • /
    • 2008
  • A fast response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of SI engine. The analyzer is based on the non-dispersive infrared absorption technique, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it has 18ms with a response to measure the $CO_2$ concentration. The fast response $CO_2$ analyzer was applied to single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for considering the engine-out $CO_2$ characteristic. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated and the transient behaviors on engine-out emission and performance will be improved.

  • PDF

On Securing Continuity of Long-Term Observational Eddy Flux Data: Field Intercomparison between Open- and Enclosed-Path Gas Analyzers (장기 관측 에디 플럭스 자료의 연속성 확보에 대하여: 개회로 및 봉폐회로 기체분석기의 야외 상호 비교)

  • Kang, Minseok;Kim, Joon;Yang, Hyunyoung;Lim, Jong-Hwan;Chun, Jung-Hwa;Moon, Minkyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.135-145
    • /
    • 2019
  • Analysis of a long cycle or a trend of time series data based on a long-term observation would require comparability between data observed in the past and the present. In the present study, we proposed an approach to ensure the compatibility among the instruments used for the long-term observation, which would allow to secure continuity of the data. An open-path gas analyzer (Model LI-7500, LI-COR, Inc., USA) has been used for eddy covariance flux measurement in the Gwangneung deciduous forest for more than 10 years. The open-path gas analyzer was replaced by an enclosed-path gas analyzer (Model EC155, Campbell Scientific, Inc., USA) in July 2015. Before completely replacing the gas analyzer, the carbon dioxide ($CO_2$) and latent heat fluxes were collected using both gas analyzers simultaneously during a five-month period from August to December in 2015. It was found that the $CO_2$ fluxes were not significantly different between the gas analyzers under the condition that the daily mean temperature was higher than $0^{\circ}C$. However, the $CO_2$ flux measured by the open-path gas analyzer was negatively biased (from positive sign, i.e., carbon source, to 0 or negative sign, i.e., carbon neutral or sink) due to the instrument surface heating under the condition that the daily mean temperature was lower than $0^{\circ}C$. Despite applying the frequency response correction associated with tube attenuation of water vapor, the latent heat flux measured by the enclosed-path gas analyzer was on average 9% smaller than that measured by the open-path gas analyzer, which resulted in >20% difference of the sums over the study period. These results indicated that application of the additional air density correction would be needed due to the instrument heat and analysis of the long-term observational flux data would be facilitated by understanding the underestimation tendency of latent heat flux measurements by an enclosed-path gas analyzer.

Oxygen Transfer Efficiencies of A Single Spiral Roll Aeration System by the Off-gas Method (Off-gas Analyzer를 이용한 하수처리장 단일선회류 방식 포기시스템 산소전달 효율의 평가)

  • Park, Bo Hwa;Ko, Kwang Baik;Park, Jae Han;Lim, Se Ho;Shin, Dong Rok;Yun, Hye Jung;Lee, Ji Young;Moon, Tae Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.534-539
    • /
    • 2006
  • The supply of oxygen for aeration is the largest energy consumer at activated sludge wastewater treatment plants. Replacement of less efficient aeration systems with fine pore aeration devices can save up to 50 percent of aeration energy costs. The purpose of this study was the diagnosis and evaluation of a domestic wastewater aeration system by the off-gas method which had been studied by US EPA and ASCE. For this study, an off-gas analyzer and its hood were made to collect off-gas. Also, a vacuum pump was connected to the analyzer to make suction of off-gas. Experiments were conducted at a domestic activated sludge wastewater treatment plant which had a single spiral roll aeration system installed with P.E tube diffuser. Data on OTE(f), SOTE(pw), OUR, and air flow rate were obtained from these experiments. In case of replacing an aeration system, it is recommended that it should be replaced with perforated membrane disc or ceramic disc fine bubble diffusers installed in a full floor coverage or grid pattern.