• Title/Summary/Keyword: gas Separation

Search Result 1,003, Processing Time 0.02 seconds

Separation of Hydrogen-Nitrogen Gases by PDMS-SiO2·B2O3 Composite Membranes (PDMS-SiO2·B2O3 복합막에 의한 수소-질소 기체 분리)

  • Lee, Suk Ho;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2015
  • $SiO_2{\cdot}B_2O_3$ was prepared by trimethylborate (TMB)/tetraethylorthosilicate (TEOS) mole ratio 0.01 at $800^{\circ}C$. PDMS[poly(dimethysiloxane)]-$SiO_2{\cdot}B_2O_3$ composite membranes were prepared by adding porous $SiO_2{\cdot}B_2O_3$ to PDMS. To investigate the characteristics of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane, we observed PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane using TG-DTA, FT-IR, BET, X-ray, and SEM. PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was studied on the permeabilities of $H_2$ and $N_2$ and the selectivity ($H_2/N_2$). Following the results of TG-DTA, BET, X-ray, FT-IR, $SiO_2{\cdot}B_2O_3$ was the amorphous porous $SiO_2{\cdot}B_2O_3$ with $247.6868m^2/g$ surface area and $37.7821{\AA}$ the mean of pore diameter. According to the TGA measurements, the thermal stability of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was enhanced by inserting $SiO_2{\cdot}B_2O_3$. SEM observation showed that the size of dispersed $SiO_2{\cdot}B_2O_3$ in the PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was about $1{\mu}m$. The increasing of $SiO_2{\cdot}B_2O_3$ content in PDMS leaded the following results in the gas permeation experiment: the permeability of both $H_2$ and $N_2$ was increased, and the permeability of $H_2$ was higher than $N_2$, but the selectivity($H_2/N_2$) was decreased.

Efficiency Estimation for Desalination System of Seawater Using Reverse Osmosis Membrane (역삼투압막 해수담수화 장치의 미네럴 분리 성능평가)

  • Moon, Deok-Soo;Jung, Dong-Ho;Kim, Hyeon-Ju;Shin, Phil-Kwon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.60-66
    • /
    • 2005
  • When external pressure higher than osmosis pressure is reversely derived into solution, its solvent is moved into the solution having lower concentration, which is called 'reverse osmosis'. We investigated the desalination application of deep ocean water using reverse osmosis pressure of $40-70\;kgf/cm^2$ We observed how to operational factor j like flow rate, water temperature and pressure have effect on efficiency of reverse osmosis membrane and salts rejection. Fluxes of reverse osmosis membrane are directly proportional to water temperature and pressure. However, salts rejection rates are positively correlated with pressure and inversely proportional to water temperature. Separation efficiencies of osmosis membrane for major elements such as $Mg^{2+},\;Ca^{+2},\;Na^+\;and\;K^+$ are as follows in a strong electrolysis solution like seawater; $Ca^{2+},\;Mg^{2+}>K^+>Na^+$. Rejection rates of $Mg^{2+}\;and\;Ca^{2+}$ that have high electric charges are over 99% and show positively correlation with water temperature. Rejection rates of $Na^+$ having low electric charge is observed to be 98%-99%, which rates is much lower than those of $2^+$ charged ions like $Ca^{2+}\;and\;Mg^{2+}$. Ion rejection rates of boron, B, are much low because boron is present il free state or gas phase in seawater. Boron concentration in desalination water is over criteria of Korean drinking water, 0.3 mg/L. However, we could satisfied with the criteria of drinking water under the operation condition like temperature $5^{\circ}C$ and pressure $70kgf/cm^2$, using the relationship that rejection rates of boron is proportional to pressure and is inversely proportional to water temperature

  • PDF

Effects of the Type of Exchanged Ions and Carbon Precursors on Methane Adsorption Behavior in Zeolite Templated Carbons Synthesized Using Various Ion-Exchanged Faujasite Zeolites (이온교환된 Faujasite 제올라이트를 이용한 제올라이트 주형 탄소체 합성 시 이온 교환 금속과 탄소 전구체가 메탄 흡착 거동에 미치는 영향)

  • Ki Jun Kim;Churl-hee Cho;Dong-Woo Cho
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • Zeolite template carbon (ZTC) was synthesized as an adsorbent to remove low-concentration CH4 from the atmosphere. The synthesis of ZTC was performed using CH4 and C2H2 as carbon precursors and their impact on adsorption was investigated. ZTC was also synthesized using Y zeolite ion-exchanged with CaCl2 and LiCl as templates to investigate the effect of using metals in ion exchange. The comparison of the carbon precursors revealed that C2H2 had a higher carbon yield than CH4. The synthesized ZTC exhibited developed micropores due to carbon deposition deep inside the micropores of the zeolite template. The kinetic diameter of C2H2 (0.33 nm) is smaller than that of CH4 (0.38 nm), which allowed for its deposition. The study compared metal precursors used for ion exchange and confirmed that the CaCl2-based ZTC developed more micropores compared to the LiCl-based ZTC. The ion-exchanged Ca inhibited pore blocking by the carbon precursor, allowing it to enter the pores. The ability of synthesized ZTC to adsorb N2 and CH4 at 298 K was investigated. The results showed that CH4 had a higher overall adsorption amount than N2. The sample synthesized using C2H2 and CaY exhibited the highest N2 and CH4 adsorption capacity. However, the sample synthesized with CH4 had the highest CH4/N2 gas uptake ratio, which is a crucial factor in designing an adsorption process. The observed difference was likely caused by the underdevelopment of ultrafine pores that are associated with N2 adsorption. This resulted in a reduction of N2 adsorption, leading to an increase in CH4/N2 separation.