• Title/Summary/Keyword: gap wind

Search Result 144, Processing Time 0.026 seconds

Flashover Characteristics of the Horizontal Air Gaps Caused by Combustion Flames (연소화염에 의한 수평배치 공기갭의 섬락전압 특성)

  • 김인식;김이국;김충년;지승욱;이상우;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2002
  • In this paper, characteristics of the ac and dc flashover voltage in the horizontal air gap of a needle-needle electrode system were investigated when the combustion flame was present near the high-voltage electrode. In order to examine the flashover phenomena and the corona inception voltages caused by flame we measured the voltage and current waveforms when the corona and the flashover was occurred. We also observed, as increasing the applied voltages, the deflection or fluctuation phenomena in the shape of flames caused by the corona wind and the coulomb's force. As the results of an experimental investigation, we found that the reduction of flashover voltages, in comparison with the no-flame case, are 62.7[%] for k=1.0, 34.2[%] for h=5[cm], 27.3[%] for h=7[cm] and 21.4[%] for h=9[cm] when ac voltage is applied.

Numerical and Experimental Investigations of Dynamic Stall

  • Geissler, Wolfgang;Raffel, Markus;Dietz, Guido;Mai, Holger
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.19-19
    • /
    • 2009
  • Dynamic Stall is a flow phenomenon which occurs on the retreating side of helicopter rotor blades during forward flight. It also occurs on blades of stall regulated wind turbines under yawing conditions as well as during gust loads. Time scales occurring during this process are comparable on both helicopter and wind turbine blades. Dynamic Stall limits the speed of the helicopter and its manoeuvrability and limits the amount of power production of wind turbines. Extensive numerical as well as experimental investigations have been carried out recently to get detailed insight into the very complex flow structures of the Dynamic Stall process. Numerical codes have to be based on the full equations, i.e. the Navier-Stokes equations to cover the scope of the problems involved: Time dependent flow, unsteady flow separation, vortex development and shedding, compressibility effects, turbulence, transition and 3D-effects, etc. have to be taken into account. In addition to the numerical treatment of the Dynamic Stall problem suitable wind tunnel experiments are inevitable. Comparisons of experimental data with calculated results show us the state of the art and validity of the CFD-codes and the necessity to further improve calculation procedures. In the present paper the phenomenon of Dynamic Stall will be discussed first. This discussion is followed by comparisons of some recently obtained experimental and numerical results for an oscillating helicopter airfoil under Dynamic Stall conditions. From the knowledge base of the Dynamic Stall Problems, the next step can be envisaged: to control Dynamic Stall. The present discussion will address two different Dynamic Stall control methodologies: the Nose-Droop concept and the application of Leading Edge Vortex Generators (LEVoG's) as examples of active and passive control devices. It will be shown that experimental results are available but CFD-data are only of limited comparison. A lot of future work has to be done in CFD-code development to fill this gap. Here mainly 3D-effects as well as improvements of both turbulence and transition modelling are of major concern.

  • PDF

Situations of GAP certified ginseng and 4P's strategies (GAP 인증인삼 현황과 4P 전략)

  • Hong, Seung-Jee;Kim, Kwan-Hoo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.2
    • /
    • pp.369-381
    • /
    • 2011
  • Ginseng in Korea has not only the big production value but also till a good reputation from overseas in the name of 'Korea Ginseng'. Having spread rapidly nationwide from 2000 year, its production keeps on increasing but its consumption becomes lazy and its price is also falling down because of comsumer's concern about mainly overusing pesticide for ginseng. In order to cope with this problem, the government introduced the GAP certification system to ginseng in 2006 to reflect consumer's needs for food safety. This system will be a good opportunity to promote ginseng consumption dramatically. In this aspect it is very important to know how well this system is established and how ginseng farmers build marketing strategies to draw new wind in the market. This study was carried out to look over the GAP certified ginseng system and show its marketing strategies using 4P's(product, place, promotion and price). The main results are as follows. GAP ginseng system currently has some weaknesses such as lack of systematic certification management and after-service, nonrealistic certification fee and poor linkage from production to consumption. In the marketing mix strategies, product strategy suggests that the most desirable appearance be transplanted ginseng filled with branch roots and 4 to 5 year-ginseng, and it is necessary to choose multi-brand strategy divided for present into for self-sufficiency and family brand strategy by use if its brand enlarges to processed products in the future. In the place strategy, 3 stages like 'producer group' - 'GAP certified facility' - 'sales shop' are based as the physical marketing channel according to traceability, and connected with giant retail market and environment friendly stand, and if its sales volume enlarges, it should be considered the GAP ginseng specialized marketplace which is a type of chain store. In the promotion strategy, the promotion of government level is necessary at first and producer alliances require the promotion targeting at the group of women under 40 with differentiation from price, quality, and safety. In the price strategy, the early stage-high price strategy which sets 20~25% higher for self-sufficiency and 30~35% for present is desirable.

Aerodynamic Characteristics of a Variable-Span Wing Flying Inside a Channel II (Effect of Asymmetric Wing Extensions) (채널 내를 비행하는 가변스팬 날개 공력특성 II (비대칭 날개 펼침))

  • Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.39-43
    • /
    • 2016
  • In this paper, a wind-tunnel test is accomplished to investigate the roll characteristics of a variable-span wing flying inside a channel. The factors that affect the roll characteristics of the wing were identified by analyzing the measured data; accordingly, when the wing is flying without both the ground and sidewall effects, the asymmetric wing extension causes the roll moment. Both the ground and the sidewall can increase the roll moment, but when the wing is affected by both the ground and the sidewall, the roll moment does not increase as much as the case where the wing is only affected by the ground. Also, the aerodynamic characteristics of the flying wing inside a channel are the nonlinear function of the wing height and the gap between the wingtip and the sidewall, both of which should be considered in a study of the stability and the flight control of the wing-in-ground effect of the vehicle flying inside a channel.

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.

Experimental Study on the Flow Characteristics of Supersonic Turbine with the Axial Gap Ratios (초음속 터빈의 축방향 간격비에 따른 유동 특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.136-142
    • /
    • 2007
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The supersonic cascade with a 2-dimensional supersonic nozzle was tested for the axial gap ratio (${\delta}$) of the supersonic turbine that is the one of the turbine design parameter. Firstly, the flow was visualized by a single pass Schlieren system. Next, total and static pressure of the cascade were measured by a pressure scanning system. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

A study on fluid flow and heat transfer around the circular cylinder located on a flat plate in crossflow (횡단류 내 평판 위에 놓인 원형 실린더 주위의 유동장 및 열전달에 관한 연구)

  • Lee, Gi-Baek;Son, Jeong-Ho;Yang, Jang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1458-1471
    • /
    • 1996
  • The present study is concerned with the heat transfer enhancement associated with a symmetrical or asymmetrical horseshoe vortex in front of and around the circular cylinder centered between the side walls of a wind tunnel. The static pressure measurements and the flow visualization in front of and around cylinders have been performed to determine the existence of horseshoe vortex. The hue-capturing method using the thermochromatic liquid crystals with great spatial resolution was used to obtain the local information of the endwall heat transfer coefficients. In case of one cylinder, the convective heat transfer coefficients of the region where the horseshoe vortex exists are larger than those of any other region. In case of two cylinders with tandem arrangement, the heat transfer rate of gap spacing (d/D= 1.5) is higher than that of gap spacings (d/D=2.0 or 2.5).

The Characteristics of Rail Temperature for Track Maintenance (궤도 관리를 위한 레일 온도의 특성)

  • 구봉근;서사범
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • The rail temperature is important to preserve the joint gap for standard length of rail and to determine the installation temperature which has direct influence on the rail buckling and failure in welded part for continuous welded rail(CWR), Therefore, we have measured and investigated various characteristics of rail temperature for each kind of rail. As the results of this, the correlation between the atmosphere temperature and the rail temperature which is commonly used by Korean Railway should be reconsidered. Also, the daily highest '||'&'||' lowest rail temperature was occurred when each temperature is higher and when it's lower. For the light rail, the rail temperature by the sun-light increases quickly and decreases late. But the time where the highest temperature is attained is same. There are some differences between the shade and sunny place about 3.0∼4.0$\^{C}$. The temperature of rail web is almost close to the conversion rail temperature for rail expansion. The wind of 1 m/s has an influence on the rail temperature around 5$\^{C}$.

  • PDF

Detection of Current Signal and Thermal Characteristics of Electric Fan Operated in Various Situations (선풍기의 운전 상황별 발열특성 및 전류신호 검출)

  • Kim, Doo-Hyun;Lee, Heung-Su
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.20-27
    • /
    • 2014
  • Cooling equipment is the frequent occurrence of fire despite the absence of the heating element. National fire statistics in 2013 show that a total of 263 fires occurred in the cooling equipment and the number of electric fan has 145 fire cases. This is accounted for 55.1% of the whole. Electric fan is the electrical appliance that the heat is generated on the winding wire and the iron core. If such characteristic is not controled properly, fire would break out at the electric fan. also there is a gap filled with an insulator between connection terminals of the capacitor in the electric fan. But in case that the gap on the capacitor is covered with some conductive material such as dust, there would be a fire as well caused by electrical heating locally. Although many studies related with those have been conducted, electric fan fire is continuously occurred. In this study, thermal characteristics and current signal in various conditions such as the heat generation of windings including iron cores of the motor and the dielectric breakdown of terminals on the capacitor connected to the motor were detected. In order to measure the maximum temperature, "third level" wind velocity button was pushed and the time selection switch to "continuation" was set. Analyzed data would be available for the fire safety of the electric fan.

A Numerical Simulation of Blizzard Caused by Polar Low at King Sejong Station, Antarctica (극 저기압(Polar Low) 통과에 의해 발생한 남극 세종기지 강풍 사례 모의 연구)

  • Kwon, Hataek;Park, Sang-Jong;Lee, Solji;Kim, Seong-Joong;Kim, Baek-Min
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.277-288
    • /
    • 2016
  • Polar lows are intense mesoscale cyclones that mainly occur over the sea in polar regions. Owing to their small spatial scale of a diameter less than 1000 km, simulating polar lows is a challenging task. At King Sejong station in West Antartica, polar lows are often observed. Despite the recent significant climatic changes observed over West Antarctica, adequate validation of regional simulations of extreme weather events such as polar lows are rare for this region. To address this gap, simulation results from a recent version of the Polar Weather Research and Forecasting model (Polar WRF) covering Antartic Peninsula at a high horizontal resolution of 3 km are validated against near-surface meteorological observations. We selected a case of high wind speed event on 7 January 2013 recorded at Automatic Meteorological Observation Station (AMOS) in King Sejong station, Antarctica. It is revealed by in situ observations, numerical weather prediction, and reanalysis fields that the synoptic and mesoscale environment of the strong wind event was due to the passage of a strong mesoscale polar low of center pressure 950 hPa. Verifying model results from 3 km grid resolution simulation against AMOS observation showed that high skill in simulating wind speed and surface pressure with a bias of $-1.1m\;s^{-1}$ and -1.2 hPa, respectively. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation of Antartic weather systems and the near-surface meteorological instruments installed in King Sejong station can provide invaluable data for polar low studies over West Antartica.