• Title/Summary/Keyword: gap width

Search Result 490, Processing Time 0.024 seconds

Pool Boiling Performance of Enhanced Tubes for a Flooded Evaporator (만액식 증발기용 성형가공관의 풀비등 성능)

  • Kim, Nae-Hyun;Kim, Tae-Hyung;Park, Woon-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.124-131
    • /
    • 2000
  • In this study, pool boiling performance of Turbo/B-type metal-formed tubes was investigated. Tubes with three different cavity gap width(0.04 mm, 0.07 mm, 0.1 mm) were manufactured and tested using R-11, R-123 and R-134a. Tests were conducted at two different saturation temperatures $4.4^{\circ}C$ and $26.7^{\circ}C.$ Heat flux was varied from 10 kW/m2 to 50 kW/m2. It was found that optimum gap width varied for different refrigerants. For low-pressure refrigerants such as R-11 or R-123, optimum gap width was 0.07 mm. For high-pressure refrigerant R-134a, however, the optimum value was 0.1 mm. Compared with the heat transfer performance of the smooth tube, the metal-formed tubes enhanced the heat transfer coefficients significantly - 6.5 times for R-11, 6.0 times for R-123 and 5.0 times for R-134a (at $4.4^{\circ}C$ saturation temperature and 40 kW/m2 heat flux), which are comparable with the performance of foreign products. The heat transfer coefficients of R-134a were larger than those of R-11 or R-123, and they increased as the saturation temperature increased.

Numerical Simulation and Experimental Research of the Flow Coefficient of the Nozzle-Flapper Valve Considering Cavitation

  • Li, Lei;Li, Changchun;Zhang, Hengxuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.176-188
    • /
    • 2017
  • The nozzle-flapper valves are widely applied as a pilot stage in aerospace and military system. A subject of the analysis presented in this work is to find out a reasonable range of null clearance between the nozzle and flapper. This paper has presented a numerical flow coefficient simulation. In every design point, a parameterized model is created for flow coefficient simulation and cavitation under different conditions with varying gap width and inlet pressure. Moreover, a new test device has been designed to measure the flow coefficient and for visualized cavitation. The numerical simulation and test results both indicate that cavitation intensity gets fierce initially and shrinks finally as the gap width varies from small to large. From the curve, the flow coefficient mostly has experienced three stages: linear throttle section, transition section and saturation section. The appropriate deflection of flapper is recommended to make the gap width drop into the linear throttle section. The flapper-nozzle null clearance is optionally recommended near the range of $D_N/16$. Finally through simulation it is also concluded that the inlet pressure plays a little role in the influence on the flow coefficient.

Roll-to-Roll Gravure Offset Printing System for Printed Electronics (인쇄전자를 위한 롤투롤 그라비아 옵셋 인쇄 장비)

  • Kim, Chung-Hwan;Choi, Byung-Oh;Ryu, Byung-Soon;Lim, Kyu-Jin;Lee, Myung-Hoon;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.461-466
    • /
    • 2007
  • There has been a great interest in printing technology as a low cost and mass production method for the application of printed electronics such as printed TFT, solar cell, RFID Tag, printed battery, and so on. In this study, apparatuses of gravure-offset printing are developed for fine line-width/gap printing and examining pattern distortion occurred in gravure-offset printing process. The fine line-width/gap pattern shows that it is possible to make around 20 micro-meter line-width/gap printing patterns. Pattern distortion is modeled, and the amount and shape of the distortion are calculated by using commercial FEM code. The roll-to-roll printing system under development consists of unwinder/rewinder, two printing units, one coating unit, drying units, guiding unit, vision system, and other auxiliary devices. For multi-layer printing, the system is designed to be capable of printing two different materials.

  • PDF

Pool boiling heat transfer enhancement by perforated plates (천공판의 풀비등 열전달 촉진에 대한 연구)

  • Kim, Nae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1406-1415
    • /
    • 1996
  • Several recent studies have revealed that boiling heat transfer may be considerably enhanced in a narrow restricted region. In his study, the narrow restricted region was formed by attaching a perforated plate on top of a boiling surface. Through systematic experiments, effects of the hole size, hole pattern, gap width between the perforated plate and the boiling surface were investigated using water or R-113. Results show that perforated plates considerably enhance the boiling of water or R-113. For water, especially, they have outperformed commercial enhanced tubes, which confirms that boiling enhancement mechanism of the perforated plate (thin film evaporation beneath the elongated bubble) is very effective to the boiling of high surface tension liquids such as water. Optimum configuration was found - 3.0 mm hole diameter, 15 mm * 15 mm hole pattern, 0.3 ~ 0.5 mm gap width for water, and 2.0 mm hole diameter, 3.5 mm * 3.5 mm hole pattern, O.5 mm gap width for R-113. A correlation which correlates most of the data within .+-. 30% was also developed.

Electron Density and Electron Temperature in Atmospheric Pressure Microplasma

  • Tran, T.H.;Kim, J.H.;Seong, D.J.;Jeong, J.R.;You, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.152-152
    • /
    • 2012
  • In this work we measured electron temperature and electron density of a microplasma by optical emission spectroscopy. The plasma is generated from a small discharge gap of a microwave parallel stripline resonator (MPSR) in Helium at atmospheric pressure. The microwave power supplied for this plasma source from 0.5 to 5 watts at a frequency close to 800 MHz. The electron temperature and electron density were estimated through Collisional-radiative model combined with Corona-equilibrium model. The results show that the electron density and temperature of this plasma in the case small discharge gap width are higher than that in larger gap width. The diagnostic techniques and associated challenges will be presented and discussed.

  • PDF

A Study on Transverse Edge Effect in Linear Induction Motor With Sheet Rotor (Sheet Rotor를 가진 직선형 유도전동기의 Transverse Edge Effect에 관한 연구)

  • Yun Jong Lee;Dal Ho Im;Soo Hyun Baek
    • 전기의세계
    • /
    • v.23 no.4
    • /
    • pp.39-45
    • /
    • 1974
  • In most previous research work, the transverse edge effect has been allowed for only by use of a relativity-increase factor. This paper gives a more exact treatment. A two-dimensional-field analysis is presented for the problem of sheet rotor linear induction motor with finite width the method used takes account of flux leakage in the space between the stator and secondary sheet rotor as well as in the secondary itself. Equations are derived for the flux density distribution in the air gap and for the starting face, in each case as a function of stator current. The cross gap flux density peaks towards athe edge of the stator. This phenomena is known as the transverse edge effect. Measurements of the flux density in the air gap and starting force on a linear induction motor with sheet rotor of different width showed a reasonable agreement,suggest that it would be desirable to take into account also, at least for this motor in which severe redistribution occurs.

  • PDF

Embodiment of Low Operating Voltage in Positive Column AC-PDPs

  • Kim, Hyun;Tae, Heung-Sik;Chien, Sung-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.95-98
    • /
    • 2003
  • The positive column discharge characteristics in the long gap (440 ${\mu}m$) are investigated based on the voltage distribution among three electrodes. In particular, the effects of the amplitude and width of the short pulse applied to the address electrode on the positive column discharge characteristics are examined intensively. By proper controlling of the amplitude and width of the address short pulse, it is found that the positive column discharge in the long gap is well constructed. As a result, under the stable static voltage margin condition, the firing and sustaining voltages are as low as those of conventional short gap(60 ${\mu}m$) discharge($V _f=220V$, $V_s=150V$) and the color purity is improved. Moreover, the luminous efficiency increases up to 60% in comparison with the conventional case.

  • PDF

Analysis of Resultant Harmonic Field Density in Air Gap for Ratio Teeth Pitch vs Slot Width (치절(teeth pitch)과 슬롯폭의 비에 의한 공극의 합성고조파밀도해석)

  • Lee, Eun-Woong;Cho, Hyun-Gil;Kim, Jong-Gyeum;Lim, Jae-Il;Kim, Sung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.171-173
    • /
    • 1995
  • Slot field harmonics exist in air gap due to inevitable slot constructure of induction motors. They give rise to noise by the electromagnetic vibration and mechanical pulsation. We calculate the slot field harmonics for varying the ratio of slot width vs teeth pitch using the carter's coefficent. We computate the flux density in air gap by FEM(Finite Element Method) and analyze it in frequency domain using DFT(Discrete Fourier Transform). We develop the new algorithm mixing FEM with DFT.

  • PDF

Analysis of Control Performance in Gap Size of MR Damper (MR Damper의 Gap Size에 따른 제어성능 분석)

  • Heo, Gwang Hee;Jeon, Seung Gon;Seo, Sang Gu;Kim, Dae Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • In this study, the flow path width (Gap Size), which is the flow path of fluid, was selected differently among various factors that determine the Ccontrol Force of MR damper, and the change of Control Force was confirmed accordingly. For this purpose, two MR dampers with a Gap Size of 1.0mm and 1.5mm were fabricated, respectively, and dynamic load experiments were conducted according to changes in applied current and vibration conditions The experimental results showed that the minimum Control Force was 3.2 times higher than 1.5mm in the case of 1.0mm Gap Size, and the maximum Control Force was 2.3 times higher than 1.5mm in the case of 1.0mm Gap Size. In addition, the increased width of the Control Force according to applied current was 34N for Gap Size 1.0mm, and 12.7N for Gap Size 1.5mm. As the gap Size increased, the overall Control Force and the increase in the Control Force by the applied current decreased. Next, the dynamic range, which is a performance evaluation index of the semi-active Control device, was 2.3 on average under 1.0mm condition and 2.8 on average under 1.5mm condition, confirming the possibility of utilization as a semi-active Control device.

Characteristics of Velocity Fields around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation (설상사주 형성조건 하에 있는 3차원투과성잠제 주변에서 내부유속변동의 특성)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.399-409
    • /
    • 2017
  • This study numerically investigates the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy acting as the main external forces of the salient formed behind the permeable submerged breakwaters. Shoreline response is also predicted by the longshore-induced flux. In this paper, a three-dimensional numerical wave tank based on the OLAFOAM, CFD open source code, is utilized to simulate the velocity field around permeable submerged breakwaters under the formation condition of salient. The characteristics of the velocity field around permeable submerged breakwaters with respect to the gap width between breakwaters and the installing position away from the shoreline under a range of regular waves for different wave height are evaluated. The numerical results revealed that as the gap width between breakwaters increases, the longshore currents become stronger. Furthermore, as the gap width becomes narrower, the point where flow converges moves from the center of the breakwater to the head part. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters. In addition, it was found that the longshore currents caused by the gap width between breakwaters and the installation position away from the shoreline are closely related to the turbulent kinetic energy.