• Title/Summary/Keyword: gap width

Search Result 490, Processing Time 0.027 seconds

Numerical and Experimental Investigation on the Tube Forming in the Radial-Forward Extrusion

  • Ko Beong-Du;Jang Dong-Hwan;Choi Ho-Joon;Hwang Beong-Bok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.26-33
    • /
    • 2005
  • In this paper, the tube forming by radial-forward extrusion is analyzed by numerical simulation and experiments. The paper discusses the effect of process variables such as gap height, relative gap width and die comer radius on tube forming. The influence of deformation patterns of flange in radial extrusion on forward extrusion for tube forming is investigated and summarized in terms of the maximum forming force and hardness variations along the extrusion path. Furthermore the external defects are shown experimentally during the forming operation. Based on finite element analysis in conjunction with experimental test in Al alloy, analysis is performed for important parameter combination in order to reduce forming defects. Eventually, the process parameters for safe forming are suggested in order to reduce the forming defects.

Numerical and Experimental Investigation on the Tube Forming in the Radial-Forward Extrusion (레이디얼-전방압출에서 튜브성형에 관한 해석 및 실험)

  • 고병두;장동환;최호준;황병복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.168-175
    • /
    • 2003
  • In this paper, the tube forming by radial-forward extrusion is analyzed by numerical simulation and experiments. The paper discusses the effects of process variables such as gap height, relative gap width and die corner radius on tube forming. The influence of deformation patterns of flange in radial extrusion on forward extrusion for tube forming is investigated and summarized in terms of the maximum forming force and hardness variations along the extrusion path. Furthermore the external defects are shown experimentally during the forming operation. Based on finite element analysis in conjunction with experimental test in Al alloy, analysis is performed for important parameter combination in order to reduce forming defects. Eventually, the process parameters for safe forming are suggested in order to reduce the forming defects.

Effects of Nd:YAG Laser Welding Parameters on Fatigue Life of Lap Joint Structure in Stainless Steel (스테인리스강의 Nd:YAG 레이저 겹치기 용접부 피로수명에 미치는 용접변수의 영향)

  • Kim, Yong;Yang, Hyeon-Seok;Park, Gi-Yeong;Lee, Gyeong-Don
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.181-183
    • /
    • 2007
  • Experimental analysis was carried out to understand the fatigue phenomena of different thickness stainless steel overlap joining structure by Nd:YAG laser welding. The fatigue life was obtained through fatigue tests with the various levels of applied load. The fatigue life is related with the parameters such as gap condition and penetration depth through experiment. As the results, tensile and fatigue strength were proportional in heat input level and bead width was identified the major factor for joining strength. Also the fatigue life were decreased depend on gap condition, it was more affected at the low load level.

  • PDF

Material Characterization of RP Process - Fused Deposition Modeling (쾌속조형용 재료의 특성 - FDM)

  • 김승화;안성훈
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.96-101
    • /
    • 2002
  • Rapid Prototyping (RP) technology has been advanced to fabricate initial prototypes from various materials. Stratasys′ Fused Deposition Modeling (FDM) is one of the typical RP processes that provide functional prototypes of ABS plastic. In order to predict the behavior of final ABS parts, it is critical to understand the material properties of the raw FDM process material, and the effect that FDM build parameters have on the FDM part. In this paper, we seek to characterize the properties of ABS parts fabricated by the FDM 1650. Using the Design of Experiment (DOE) approach, the process parameters of FDM, such as raster orientation, air gap, bead width, color, and model temperature were examined. Tensile strengths of crisscross specimens, 〔45°/-45°〕, cross specimens, 〔0°/90°〕, and directionally fabricated tensile specimens (〔0°〕 and 〔90°〕) were measured and compared with the injection molded FDM-ABS P400 material. For the FDM parts made with a -0.003"air gap, the typical tensile strength ranged between 50 percent and 83 percent of the strength of injection molded ABS P400. From the experiments, a couple of build rules for designing FDM parts were obtained.

A Second Order Exact Scaling Method for Turbomachinery Performance Prediction

  • Pelz, Peter Fanz;Stonjek, Stefan Sebastian
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.177-187
    • /
    • 2013
  • A scaling method valid for most turbomachines based on first principles is derived. It accounts for axial and centrifugal turbomachines with respect to relative gap width/tip clearance, relative roughness, Reynolds number and/or Mach number for design and off-design operation as well. The scaling method has been successfully validated by a variety of experimental data obtained at TU Darmstadt. The physically based, hence reliable and universal method is compared with previous, empirical scaling methods.

Analysis Techniques of Corona Discharges in Air with Needle-Plane Electrode System (침-평판 전극 구조에서 발생하는 기중 코로나 방전의 해석 기법)

  • 강성화;박영국;권순석;정수현;류부형;임기조
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.49-53
    • /
    • 1996
  • Corona discharges in air insulated electric power systems cause power loss, produce interfering electromagnetic radiation, and can indicate incipient failure. An understanding of corona discharges in air gap is clearly Important. The Wavelet transformation is an extended method of fourier transformation. The fourier method is a powerful tool for signal analysis, but it can't include information for time. However the wavelet transformation analysis can include on the information of time and frequencies at the same time. In this paper we apply the wavelet transformation to the corona signals in needle-plane air gap for the purpose of analysis of developing aspects of corona discharges. We analyzed the developing aspects of corona discharges, namely, corona discharge current, repetition rates, width of Pulse distribution region, pulseless region and frequencies distribution of corona discharge pulses.

  • PDF

A Parametric Study of the Wave-Generation Performance of a Piston-Type Wave Maker (피스톤 타입 조파기의 형상 매개변수에 대한 조파성능 연구)

  • Kwon, Do-Soo;Kim, Sung-Jae;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.504-509
    • /
    • 2019
  • The wave-generation performance of a piston-type wave maker was analyzed using the numerical wave tank technique, and the numerical results were compared with theoretical solutions. A two-dimensional frequency domain analysis was conducted based on the Rankine panel method. Various parameters were used to examine the wave-generation performance, such as the width and gap of the wave board. The effects of the thickness of the wave board and of the gap from the bottom of the tank were evaluated. The difference in the amplitude of the generated wave between the analytical solution and the numerical result was examined, and its causes were addressed due to the gap flow between the bottom of the tank and the wave board. This parametric analysis can be utilized to design an optimum wave make parametric analysis to design an optimum wave maker that can generate waves with amplitudes that can be predicted accurately.

Analysis of Upper Torsos Replicas of Elderly Women for Bodice Pattern

  • Shin, Hae-Kyung
    • International Journal of Costume and Fashion
    • /
    • v.3
    • /
    • pp.13-24
    • /
    • 2003
  • The purpose of this study was to examine the changes brought by the upper body form using a three-dimensional human body measurement the gypsum method. The developed plane figure was constructed using paper replica to analyze the dimensional shape of the upper torso and to be able to design clothes suitable for elderly women's physical characteristics. The characteristics are analyzed and compared with existing patterns in order to extract the components for the pattern design. The examination was carried out based on the developed plane figures of upper body surface replicas. Type 1, the bent-forward body form, has a wide gap on the shoulder. In Type 2, the gap of waist line was wide at angulus scapulae point. Type 3 was the thin body form, and the girth of the chest, front interscye breadth and back interscye breadth were more level with one another, compared to the other types. In Type 4, the bent-backward body form, there was a wide gap on front shoulder. Comparison with the developed plane figure and existed pattern, items revealed differences in significance included the front and back interscye width between the measured values of the existed patterns and the developed plane figure. Therefore, the basic components of basic bodice pattern for old women were determined in the up-bust circumference and length of the back.

A Study of QMSA Characteristics According to the Gap Variance between Ground Plane and Radiation Patch (접지판과 방사 패치 사이의 간격 변화에 따른 QMSA의 특성 연구)

  • Ryu, Hyun;Park, Sung-Kyo;Park, Chong-Baek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.11-16
    • /
    • 1999
  • In this paper, we designed and fabricated QMSA(Quarter-Wavelength Microstrip Antenna) for 850MHz band on the CGP-500 PTFE substrate(by CHUKOH company) with ε/sub r/=2.6, H=1.6mm(±0.08), where width of the radiation patch is .identical with that of the ground plane. A well matched feed point was obtained by experiments and this QMSA was fed by using prove feed method. The resonant frequencies and the return losses were mcasured by cutting the gap L₃ between the radiation patch and the ground plane, with a 5mm cutting length, step by step. As a result, we found that the measured return losses were decreased and the resonant frequencies were increased when the gap L₃ was shorter, especially under 10mm, unlike we had expected.

  • PDF

Study on single gap transflective fringe-fields switching liquid crystal display using the liquid crystal with negative dielectric anisotropy (유전율 이방성이 음인 액정을 이용한 FFS 모드의 단일 갭형 반투과형 액정 디스플레이 연구)

  • Kim, Jin-Ho;Chin, Mi-Hyung;Lim, Young-Jin;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.312-313
    • /
    • 2008
  • A transflective liquid crystal displays associated with fringe field switching (FFS) mode of new concept is proposed. The device utilizes unique characteristic of the FFS mode in which the rotation angle of LC director is strongly dependent on electrode position in on state. We use the liquid crystal with negative dielectric anisotropy. Also we are look for optimized electrode size and the optimization of pixel electrode width and distance between them, the LC director could rotate about $22.5^{\circ}$ and $45^{\circ}$ depending on electrode positions. Consequently, we get high transmittance and high reflection on the optimized electrode condition. Respectively, a high image quality transflective display with single gap and single gamma characteristics realized.

  • PDF