• Title/Summary/Keyword: gap measurement

Search Result 701, Processing Time 0.026 seconds

Fabrication of the catalyst free GaN nanorods on Si grown by MOCVD

  • Ko, Suk-Min;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.232-232
    • /
    • 2010
  • Recently light emitting diodes (LEDs) have been expected as the new generation light sources because of their advantages such as small size, long lifetime and energy-saving. GaN, as a wide band gap material, is widely used as a material of LEDs and GaN nanorods are the one of the most widely investigated nanostructure which has advantages for the light extraction of LEDs and increasing the active area by making the cylindrical core-shell structure. Lately GaN nanorods are fabricated by various techniques, such as selective area growth, vapor-liquid-solid (VLS) technique. But these techniques have some disadvantages. Selective area growth technique is too complicated and expensive to grow the rods. And in the case of VLS technique, GaN nanorods are not vertically aligned well and the metal catalyst may act as the impurity. So we just tried to grow the GaN nanorods on Si substrate without catalyst to get the vertically well aligned nanorods without impurity. First we deposited the AlN buffer layer on Si substrate which shows more vertical growth mode than sapphire substrate. After the buffer growth, we flew trimethylgallium (TMGa) as the III group source and ammonia as the V group source. And during the GaN growth, we kept the ammonia flow stable and periodically changed the flow rate of TMGa to change the growth mode of the nanorods. Finally, as the optimization, we changed the various growth conditions such as the growth temperature, the working pressure, V/III ratio and the doping level. And we are still in the process to reduce the diameter of the nanorods and to extend the length of the nanorods simultaneously. In this study, we focused on the shape changing of GaN nanorods with different growth conditions. So we confirmed the shape of the nanorods by scanning electron microscope (SEM) and carried out the Photoluminescence (PL) measurement and x-ray diffraction (XRD) to examine the crystal quality difference between samples. Detailed results will be discussed.

  • PDF

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

Compact Dual-Band Ground Radiation Antenna Using Controlled Endless Metal-Rim Modes for WLAN Application (메탈 림 특성 모드를 활용한 WLAN 대역 초소형 이중 대역 그라운드 방사 안테나)

  • Jeon, Ji-hwan;Kim, Hyeong-dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.333-338
    • /
    • 2019
  • In this study, we introduce a dual-band ground radiation antenna using an endless metal-rim mode control method that operates in the WLAN band. In the proposed antenna, the metal-rim modes are excited as one- and two-wavelength-mode radiators by a dual-band ground radiation antenna, which occupies a small space on the ground plane. The metal rim surrounds the ground plane with a gap of only 2 mm. In addition, two capacitors are inserted between the ground plane and the endless metal rim to control the one- and two-wavelength modes of the endless metal rim. Based on simulation and measurement results, we noted that the proposed antenna has an impressively high radiation performance.

Signal-to-noise Ratio in Time- and Frequency-domain Photoacoustic Measurements by Different Frequency Filtering (주파수 필터링 함수에 따른 시간 및 주파수 영역 광음향 측정에 대한 신호 대 잡음비 분석)

  • Kang, DongYel
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.2
    • /
    • pp.48-58
    • /
    • 2019
  • We investigate the signal-to-noise ratios (SNRs) of time-domain (i.e. pulsed illumination) and frequency-domain (i.e. chirped illumination) photoacoustic signals measured by a spherically focused ultrasound transducer for spherical absorbers. The simulation results show that the time-domain photoacoustic SNR is higher than that of frequency-domain photoacoustic signals, as reported in the previous literature. We understand the reason for this SNR gap between the two measurement modes by analyzing photoacoustic-signal spectra, considering the incident beam energy controlled by the maximum permissible exposure. As the result of this approach, we find that filtering off the DC term in the chirped signal's spectrum improves frequency-domain photoacoustic SNRs by up to approximately 5 dB. In particular, it is observed that photoacoustic SNRs are highly sensitive to an upper-frequency value of frequency filtering functions, and the optimal upper-frequency values maximizing the SNR are different in time- and frequency-domain photoacoustic measurements.

Effects of Horticultural Therapy on the Emotions and Stress Index of Trainees Entrusted to the Juvenile Classification Review Center

  • Ryu, Ja Yeong;Yun, Suk Young;Choi, Byung Jin
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.1
    • /
    • pp.47-53
    • /
    • 2020
  • This study conducted a horticultural therapy program for trainees entrusted to the Juvenile Classification Review Center in order to fill the educational gap while providing emotional stability during the one-month period of commissioned education. The effects of horticultural therapy were examined by the pretest and posttest changes of the emotional items such as anxiety, self-esteem, self-efficacy and stress index. As the research method, this study used the one-group pretest-posttest experimental design on 16 female trainees of commissioned education staying at the Juvenile Classification Review Center in the juvenile reformatory located in A city. The horticultural therapy program was carried out in four sessions: two on flower arrangement and two on planting. The scores before and after the horticultural therapy program were measured using the Revised Children's Manifest Anxiety Scale (RCMAS) to examine the effects of horticultural therapy on the reduction of anxiety for the adolescents staying in the Juvenile Classification Review Center. The results show that there was significant decrease in the mean of anxiety from 62.5 (SD = 6.8) to 57.6 (SD = 8.1) points after the program (p = .002). There was no significant change in self-esteem, which was 76.9 (SD = 11.2) before the horticultural therapy and 78.3 (SD = 8.7) after the therapy (p = .420). In self-efficacy, there was no significant change from 72.9 (SD = 10.9) before and 75.1 (SD = 11.0) after horticultural therapy (p = .178). In order to examine the physiological changes in such emotional functions, this study measured the stress index using the uBioMacpa as the tool. The result of the measurement showed that there was a significant change in the mean from 33.8 (SD = 2.3) before to 31.1 (SD = 2.2) after the horticultural therapy (p < .001).

Study of Inorganic CsPbI2Br Perovskite Solar Cell Using Hot-air Process (Hot-air 공정을 이용한 무기 CsPbl2Br 페로브스카이트 태양전진 제작 연구)

  • RINA, KIM;Dong-Gun, Lee;Dong-Won, Kang;Eundo, Kim;Jeha, Kim
    • Current Photovoltaic Research
    • /
    • v.10 no.4
    • /
    • pp.101-106
    • /
    • 2022
  • We prepared a CsPbI2Br solution using Cesium iodide (CsI), Lead (II) bromide (PbBr2) and Lead (II) iodide (PbI2) materials into a polar solvent mixture of N,N-dimethylformamide (DMF) and Dimethyl sulfoxide (DMSO). A simple spin coating technique was used for the fabrication of CsPbI2Br absorber layer in the solution process. In order to prepare uniform coating of absorber film we adopted a hot-air process in assocation with the spin coating. It was confirmed that the thin film manufactured by the hot-air process had a higher absorption rate than that without it, and the optical band gap was measured 1.93 eV. The thin film of absorber was uniformly prepared and revealed the Black α-Cubic crystal phase as proved through X-ray diffraction analysis. Finally, a perovskite solar cell having an n-i-p structure was manufactured with a CsPbI2Br perovskite absorption layer. From the solar cell, we obtained a power conversion efficiency (PCE) of 5.97% in a forward measurement.

A QUALITATIVE SURVEY ON SUCCESS FOR MAINTENANCE PROJECTS

  • Albert P C Chan;Daniel W M Chan;Edmond W M Lam
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.186-195
    • /
    • 2007
  • Key Performance Indicators (KPIs) are the criteria of measuring project performance in order to attain construction excellence. Previous researchers have examined the abstract concept of success for general new construction and identified its relationship with the factors of success. In fact, most buildings exist to satisfy the needs of people. With the passing of time and change in technology, buildings have to be maintained and renovated in order to continue functioning properly for the benefits of users. Therefore, criteria and factors of success have increasingly attracted the attention of both researchers and practitioners, especially in cities where buildings become ageing. However, the topic of project success for maintenance projects is less discussed in previous research, and project participants, including maintenance surveyors should be able to identify the success measurement and its associated factors for performance improvement. This study fills the research gap by investigating the criteria and factors of success for maintenance projects. It first provides a summary of the literature review on the criteria and factors of success for construction projects. An empirical study has also been carried out with ten practitioners in Hong Kong to further identify the criteria and factors critical for the success of maintenance projects in practice. While most criteria and factors of success for new construction projects are also applicable to maintenance projects, participants in maintenance projects believe that effective communication is in particular important to provide quality service to the end-users.

  • PDF

Analysis of Engine Load Factor for Agricultural Cultivator during Plow and Rotary Tillage Operation (플라우 및 로터리 작업 시 농업용 관리기의 엔진 부하율 분석)

  • Si-Eon Lee;Taek-Jin Kim;Yong-Joo Kim;Ryu-Gap Lim;Wan-Soo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • The aim of this study was to measure and analyze engine load factor (LF) according to working conditions (operation type and gear stage) of small agricultural multi-purpose cultivator to estimate the emission of air pollutants. To calculate LF, a torque sensor capable of collecting torque and rotational speed was installed on the engine output shaft and DAQ was used to collect data. A field test was conducted with major operation of a cultivator and tillage operations (plow tillage and rotary tillage). Engine power was calculated using engine torque and rotational speed and LF was calculated using real-time power and rated power. In addition, unified LF was calculated using the weight for each operation and the average LF for each operation. As a result, average LF values at 1.87 and 3.10 km/h by plow tillage were 0.50 and 0.69, respectively. Average LF values at 1.87 and 3.10 km/h by rotary tillage were 0.70 and 0.78, respectively. Furthermore, unified LF calculated in consideration of the weight factor showed a value of 0.65, which was 135% higher than the conventional LF (0.48). Results of this study could be used as basic information for realizing LF values in the field of agricultural machinery.

Evaluation and improvement of external electric blinds through field application (실증 적용을 통한 외부 전동블라인드의 성능 평가 및 개선 방안)

  • Min-Woo Kang;Hee-Dong Lee;Yang-Ki Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.181-188
    • /
    • 2023
  • In a typical living space, windows are directly exposed to the external noise environment. The best way to reduce outside noise is to block it from the outside, not the inside. Exterior blinds for blocking sunlight are commercialized in various ways. However, it has not yet been actively utilized in Korea. In the previous study, an experiment was conducted in an accredited laboratory to verify the sound insulation performance of an external motorized blind manufactured for shading. And it was verified that there is a sound insulation performance of 6 dBA compared to the reduction performance of a general window. In this study, we tried to confirm the reduction performance by applying the sound insulation performance of external electric blinds to windows in actual living spaces. In addition, an improvement plan was sought to increase the effective noise reduction performance. As a result of the measurement, the reduction performance of the external motorized blind itself was insufficient at the level of 1 dBA to 3 dBA. However, additional reduction performance of the 2 dBA level was confirmed by filling the gap between the blind slits.

Calculation and Uncertainty Estimation of the Volume of Reverberation Chamber with Indeterminate Form (부정형 잔향실의 체적 산출과 체적 불착도 평가)

  • Suh, Jae-Gap;Suh, Sang-Joon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.375-380
    • /
    • 2007
  • A reverberation chamber should be designed and constructed so as to satisfy its purposes and available space. However, it is somewhat difficult to meet the intended design requirements due to various errors from construction process. So, the post-construction measurement of its volume and surface areas is very essential to check the actual volume and volume uncertainty of a reverberation chamber These values should be carefully calculated and accurately estimated since they are used not only to evaluate the acoustic characteristics of building materials but also to calculate uncertainties for other acoustic characteristics. In this work, the method for the calculation and uncertainty estimation of the volume of a reverberation chamber is presented. To this end, the coordinates of all corners was measured with Total Station after construction. The results showed that the calculated volume of the measured reverberation chamber differs by 5 % from the design specification. The expanded volume uncertainty was also estimated to be about 2 % of the total calculated volume.