• Title/Summary/Keyword: gap joint

Search Result 255, Processing Time 0.028 seconds

Unilateral intraoral vertical ramus osteotomy and sagittal split ramus osteotomy for the treatment of asymmetric mandibles

  • Lee, Jee-Ho;Park, Tae-Jun;Jeon, Ju-Hong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.2
    • /
    • pp.102-108
    • /
    • 2015
  • In surgery for facial asymmetry, mandibles can be classified into two types, rotational and translational, according to the required mandibular movements for surgery. During surgery for rotational mandibular asymmetry, a bilateral sagittal split ramus osteotomy (BSSRO) may cause a large bone gap between the proximal and distal segments as well as condylar displacement, resulting in a relapse of the temporomandibular joint disorder, especially in severe cases. The intraoral vertical ramus osteotomy has an advantage, in this respect, because it causes less rotational displacement of the proximal segment on the deviated side and even displaced or rotated condylar segments may return to their original physiologic position. Unilateral intraoral vertical ramus osteotomy (UIVRO) on the short side combined with contralateral SSRO was devised as an alternative technique to resolve the spatial problems caused by conventional SSRO in cases of severe rotational asymmetry. A series of three cases were treated with the previously suggested protocol and the follow-up period was analyzed. In serial cases, UIVRO combined with contralateral SSRO may avoid mediolateral flaring of the bone segments and condylar dislocation, and result in improved condition of the temporomandibular joint. UIVRO combined with contralateral SSRO is expected to be a useful technique for the treatment of rotational mandibular asymmetry.

Development of Laser-Rotating An Hybrid Welding Process (레이저-회전 아크 하이브리드 용접공정의 개발)

  • Kim, Cheol-Hee;Chae, Hyun-Byung;Lee, Chang-Woo;Kim, Jeong-Han;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.88-92
    • /
    • 2006
  • Laser-rotating arc hybrid welding was introduced by combining $CO_2$ laser and rotating gas metal arc welding. While the arc rotation enhances the weld pool motion, it reduces the undercut formation which is one of most critical weld defects in the conventional laser-arc hybrid welding. This research investigated the bead characteristics according to the welding parameters such as frequency of rotation, welding voltage, shielding gas composition and interspacing distance between laser and we. The welding parameters were selected to reduce spatter generation and ensure sound weld beads fur bead welding and butt welding with various joint gaps. Gap bridging ability was improved, such that the sound weld beads were achieved for butt joint with up to 2mm joint sap, with no adjustment of CTWD(Contact tip-to-workpiece distance) and electrode diameter.

Implementation of CAM Program for 6-Axis CNC Pipe Coaster (6축 CNC 파이프 코스터 전용 CAM 프로그램 구현)

  • Lho, Tae-Jung;Lee, Wook-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2202-2209
    • /
    • 2009
  • Joint paths are induced mathematically for many kinds of joint pattern between master- and sub-pipes. By compensating them with root gap of welds and kerf width, real cutting paths are determined. Their NC codes are generated, and the paths generated by NC code are verified by a ghost function. A beveling is implemented through tilting a torch in the A- and B-axis direction for 8 sections in the chuck rotation of C-axis. The effective CAM program was developed specially for 6-axis CNC pipe coasters which cut a master or sub- pipe along the cutting path and simultaneously fulfill a beveling process.

Stiffness Determination Of A Bolted Member Using Optimization Technique (최적화 기법을 이용한 보울트 체결체의 강성 평가)

  • 김태완;조덕상;성기광;손용수;박성호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.151-157
    • /
    • 1993
  • In this paper a useful method on evaluating the joint stiffness of bolted memeber was introduced using optimization technique on the basis of Finite Element Method. A finite element model having one directional gap element at bo undary area was introduced to compensate the prying force in jointed members which might caused by geometrical configuration of members. Results showed a good aggrement with classical method in certain range and will be available to definine the design margine of pre-load design.

  • PDF

Modified T-Plate Interpositional Arthroplasty for Temporomandibular Joint Ankylosis: A New and Versatile Option

  • Ahmad, Imran;Mir, Mohd Altaf;Bariar, Lalit Mohan
    • Archives of Plastic Surgery
    • /
    • v.42 no.6
    • /
    • pp.716-720
    • /
    • 2015
  • Background This study has been conducted with the aim of evaluating modified T-plate interpositional arthroplasty. Methods A prospective comparative study in patients admitted with temporomandibular joint ankylosis. Ankylotic temporomandibular joint arthroplasty included condylectomy gap arthroplasty in 7, temporalis muscle flap interpositional arthroplasty in 8, and modified T-plate interpositional arthroplasty in 13 cases. The patients were followed for three years. Collected data were tabulated and subjected to Fisher's exact test, chi-square test and probability estimation. Results A significant increase in interincisal distance of 32 mm was seen in 12 (92.31%) patients in the T-plate interposition group, in 2 (25%) cases of the temporalis muscle flap interposition group, and in 1 case (14.28%) of the condylectomy group at 12, 24, and 36 months. Re-ankylosis was observed in 1 case (9.69%) of the T-plate interposition group, while as it was observed in 4 (50%) cases in the temporalis muscle flap interposition group and 4 (57.14%) cases in the condylectomy group, and these differences were statistically significant. Conclusions Our clinical experience with the use of the T-plate over the past 5 years has been encouraging, and our physiotherapy technique is quite simple. Even illiterate parents can assess it easily. Hence, we recommend this easy technique that does not damage the temporalis muscle for the management of temporomandibular joint ankylosis.

Finite element simulations on the ultimate response of extended stiffened end-plate joints

  • Tartaglia, Roberto;D'Aniello, Mario;Zimbru, Mariana;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.727-745
    • /
    • 2018
  • The design criteria and the corresponding performance levels characterize the response of extended stiffened end-plate beam-to-column joints. In order to guarantee a ductile behavior, hierarchy criteria should be adopted to enforce the plastic deformations in the ductile components of the joint. However, the effectiveness of thesecriteria can be impaired if the actual resistance of the end-plate material largely differs from the design value due to the potential activation of brittle failure modes of the bolt rows (e.g., occurrence of failure mode 3 in the place of mode 1 per bolt row). Also the number and the position of bolt rows directly affect the joint response. The presence of a bolt row in the center of the connection does not improve the strength of the joint under both gravity, wind and seismic loading, but it can modify the damage pattern of ductile connections, reducing the gap opening between the end-plate and the column face. On the other hand, the presence of a central bolt row can influence the capacity of the joint to resist the catenary actions developing under a column loss scenario, thus improving the joint robustness. Aiming at investigating the influence of these features on both the cyclic behavior and the response under column loss, a wide range of finite element analyses (FEAs) were performed and the main results are described and discussed in this paper.

Structural Analysis and Safety Assessment for Constricted Bridges (협착교량의 구조해석 및 안전성 평가)

  • Jeong, Jae-Hun;Kim, Moon-Ok;Choi, Hyun-Ho;Kim, Jang-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.33-38
    • /
    • 2022
  • As the intense heat continues, many cases of highway pavement blow up and bridge expansion joints damages have been inspected. Especially, Expansion joint closure of bridges is an important problem that can threat the safety of the bridge structure or reduce long-term durability. This paper proposed a structural analysis method for bridges having expansion joint closure and structural analysis was performed to verify the effects according to bridge types. Analysis bridges were divided into four types: concrete and steel bridges, shallow and piled foundations. To induce the situation of abutments and bridge decks are jammed, the following loads were additionally considered; lateral flow pressure, pavement expansion by alkali-aggregate reaction, creep settlement of backfill. The structural analysis method was verified by comparing the structural analysis results with the actually measured joint gap data. In addition, behavioral analysis due to joint closure was conducted to confirm the change in safety ratio by type of superstructure as the axial force increased.

Result of Surgical Treatment of Intra-Articular Fractures of the Calcaneus - Based on CT Classification and Open Reduction and Internal Fixation - (종골 관절내 골절의 수술적 치료 후 임상 결과 -전산화 단층 촬영에 따른 분류 및 관혈적 정복 및 내고정 치료-)

  • Kim, Eui-Soon;Seo, Hyun-Mo;Lee, Kyu-Min;Choi, Hun-Hwi;Moon, Myung-Sang;Lee, Man-Hee;Choi, Won-Tae
    • Journal of Korean Foot and Ankle Society
    • /
    • v.7 no.2
    • /
    • pp.238-249
    • /
    • 2003
  • Purpose: To report the clinical result of the intraarticular calcaneus fracture after open reduction and internal fixation with plate by lateral approach. Materials and Methods: Thirty-six calcaneal fractures of 33 patients(29 men and 4 women) were treated by open reduction and internal fixation using an lateral approach from March, 1997 to May, 2002 and were followed more than one year. The autogenous iliac bone graft was done in 2 cases but the others didn't. Radiographically B?hler angle and Gissane angle on simple lateral radiograph were measured and in the 15 cases, the step-off(gap) of posterior facet joint on post-operative CT images were followed. The Salama method was used for evaluation of clinical results. Results: According to Sanders classification, 19 cases of the 36 cases were classified as type II. Type III fracture were found in 12 cases and type IV in 5 cases. The following results were obtained: twenty-two cases(61.1%) out of 36 cases were estimated as good or excellent. The good results or more were obtained in 15 cases(78.9%) in type II and 7 cases(58.3%) in type ill, but no case in type IV. B?hler angles were improved from preoperative average 1.6?to postoperative average 23.4?, Gissane angle was improved from preoperative 107.2?to postoperative 122.8?, respectively. Among 36 cases, Computed tomography was carried out in 15 cases. The postoperative step-off (gap) of posterior facet joint on computed tomography was filled with cancellous bone. Satifactory results was obtained in 7 cases with 2mm gap or less and in 6 cases of 2-5mm. There were no satifactory results in 2 cases with 5mm gap or more. Conclusion: Open reduction and internal fixation for intra-articular fracture of calcaneus was thought to be a good treatment modality. It is thought that the lateral approach is one of the good one for surgical treatment, and that accurate reduction of the posterior facet, acceptable recovery of B?hler angle are more important to obtain best results.

  • PDF

TENSILE STRENGTH OF LASER WELDED-TITANIUM AND GOLD ALLOYS (티타늄과 금합금의 레이저 용접부의 인장강도)

  • Song, Yun-Gwan;Ha, Il-Soo;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.200-213
    • /
    • 2000
  • Lasers have given dentistry a new rapid, economic, and accurate technique for metal joining. Although laser welding has been recommended as an accurate technique, there are some limitations with this technique. For example, the two joining surfaces must have a tight-fitting contact, which may be difficult to achieve in some situations. The tensile samples used for this study were made from a custom-made pure titanium and type III gold alloy plates. 27 of 33 specimens were sectioned perpendicular to their long axis with a carborundum disk and water coolant. Six specimens remained and served as the control group. A group of 6 specimens was posed as butt joints in custom parallel positioning device with a feeler gauge at each of three gaps : 0.00, 0.25. and 0.50mm. All specimens were then machined to produce a uniform cross-sectional dimension, none of the specimens was subjected to any subsequent form of heat treatment. Scanning electron microscopy was performed on representative tested specimens at fractured surfaces in both the parent metal and the weld. Vickers hardness was measured at the center of the welds with a micropenetrometer using a force of 300gm for 15 seconds. Measurement was made at approximately $200{\mu}m\;and\;500{\mu}m$ deep from each surface. One-way analysis of variance (ANOVA) and Scheffe's test was calculated to detect differences between groups. The purpose of this study is to compare the strength and properties of the joint achieved at various butt Joint gaps by the laser welding of type III gold alloy and pure titanium tensile specimens in an argon atmosphere. The results of this study were as follows : 1. When indexing and welding pure titanium, there was no decrease in ultimate tensile strength as compared with the unsectioned alloys for indexing gaps of 0.00 to 0.50mm, although with increasing gap size may come increased distortion (p>0.05). 2. When indexing and welding type III gold alloy, there were significant differences in ultimate tensile strength among groups with weld gaps of 0.00mm, 0.25 and 0.50mm, and the control group. Group with butt contact without weld gap demonstrated a significant higher ultimate tensile strength than groups with weld gaps of 0.25 and 0.50mm (p<0.05). 3. When indexing and welding the different metal combination of type III gold alloy and pure titanium, there were significant differences in ultimate tensile strength between groups with weld gaps of 0.00, 0.25, and 0.50mm. However, the mechanical properties of the welded joint would become too brittle to be acceptable clinically (p<0.05). 4. The presence of large pores in the laser welded joint appears to be the most important factor in controlling the tensile strength of the weld in both pure titanium and type III gold alloy.

  • PDF

Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis (임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구)

  • Eom, Tae-Gwan;Suh, Seung-Woo;Jeon, Gyeo-Rok;Shin, Jung-Wook;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.