• Title/Summary/Keyword: gap cooling

Search Result 175, Processing Time 0.028 seconds

Experimental study on the thermal charateristics according to the pre-load and cooling condition for the high speed spindle with grease lubrication (그리스윤활 고속주축의 예압과 냉각조건에 따른 열특성의 실험적 고찰)

  • 최대봉;김수태;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.41-46
    • /
    • 2003
  • The important problem in high speed spindles is to reduce and minimize the thermal effect by motor and bail bearings. Thermal characteristics according to the bearing pre-load and cooling condition are studied for the test spindl with grease lubrication and high frequency motor. Bearing and motor we main heat generation, and heat generation by ball bearings as a function of load, viscosity and gyroscopic moment effect are considered. Temperature distribution and thermal displacement according to the speed of spindle are measured by thermocouple and gap sensor. The results show that the fitting pre-load and cooling temperature are very effective to minimize the thermal effect by motor an ball bearings.

  • PDF

Experimental study on the thermal characteristics according to the preload and cooling for the high speed spindle with oil mist lubrication (오일미스트윤활 고속주축의 예압과 냉각에 따른 열특성의 실험적 고찰)

  • 김수태;최대봉;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.428-432
    • /
    • 2004
  • The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball bearings. Thermal characteristics according to the bearing preload and hollow shaft cooling are studied for the test spindle with the oil mist lubrication and high frequency motor. Bearings and motor e main heat generation, and heat generation by ball bearings as a function of load, viscosity and gyroscopic moment effect are considered. Temperature distribution and thermal displacement according to the speed of spindle are measured by thermocouple and gap sensor. The results show that the fitting preload and hollow haft cooling are very effective to minimize the thermal effect by the motor and ball bearings.

  • PDF

A Preliminary Assessment on ERVC Performance Depending on Insulation Conditions (단열재 조건에 따른 원자로용기 외벽냉각 성능 예비분석)

  • Dong-Hyeon Choi;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Lots of researches have been conducted on in-vessel retention (IVR) to prevent or mitigate severe accident in nuclear power plants. Various methodologies were proposed and the external reactor vessel cooling was selected as a part of promising IVR strategy. In this study, the strategy is strengthened by enhancing the natural circulation performance through the adoption of insulation in the reactor cavity. A thermal analysis was carried out based on an assumed accident scenario and its results were used as boundary conditions for subsequent seven flow analysis cases. By comparing the natural circulation performance, effects of annular gaps and insulation shapes on the mass flow rate and flow velocity were quantified. The improvement in cooling performance can be reflected in actual design via detailed assessment.

Electrical Properties of Insulating Oils for Diagnostic X-ray Tube (진단용 X 선관 절연유의 전기적 특성)

  • Kim, K.C.;Lee, I.S.;Baik, G.M.;Kim, D.H.;Kim, W.G.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.597-600
    • /
    • 2001
  • In order to investigate the electrical properties of X-ray tube oils for insulating and cooling, the breakdown characteristics in temperature range of $20\sim100[^{\circ}C]$, that of AC breakdown in 0.5~2.5[mm] of gap length, we are made researches. The classification for the physical properties of oil for X-ray tube by FTIR and H-NMR experiments was confirmed to type of mineral oils. As for the dependance of breakdown characteristics due to electrode gap length, breakdown voltage was found nearly uniform by impurity effect according to the increase of gap. As a result the characteristics for AC breakdown, the dielectric strength was increased to $90[^{\circ}C]$ but decreased over $90[^{\circ}C]$ in the temperature range.

  • PDF

A Non-Heating Small-Sclaed Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation (소형 비가열 실험을 이용한 원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1927-1932
    • /
    • 2004
  • A 1/21.6 scaled non-heating experimental facility was prepared utilizing the results of a scaling analysis to simulate the APR1400 reactor and insulation system. The behaviors of the air bubble-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the injected air flow rate and distribution. As the injected air flow rates increased, the natural circulation flow rates also increased. Both the longitudinal and the latitudinal distributions of the injected air affected the natural circulation flow rates, especially, the longitudinal effect is more larger.

  • PDF

Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.71-86
    • /
    • 2016
  • The present study deals with a numerical simulation for the transport phenomena in three configurations of Membrane Distillation (Air Gap, Direct Contact and Sweeping Gas Membrane Distillation) usually used for desalination in order to make an objective comparison between them under the same operating conditions. The models are based on the conservation equations for the mass, momentum, energy and species within the feed saline and cooling solutions as well as on the mass and energy balances on the membrane sides. The theoretical model was validated with available data and was found in good agreement. DCMD configuration provided the highest pure water production while SGMD shows the highest thermal efficiency. Process parameters' impact on each configuration are also presented and discussed.

Electrical Properties of Insulating Oils for Diagnostic X-ray Tube (진단용 X 선관 절연유의 전기적 특성)

  • 김건중;이인성;백금문;김두호;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.597-600
    • /
    • 2001
  • In order to investigate the electrical properties of X-ray tube oils for insulating and cooling, the breakdown characteristics in temperature range of 20∼100[$^{\circ}C$], that of AC breakdown in 0.5∼2.5(mm) of gap length, we are made researches. The classification for the physical properties of oil for X-ray tube by FTIR and $^1$H-NMR experiments was confirmed to type of mineral oils. As for the dependance of breakdown characteristics due to electrode gap length, breakdown voltage was found nearly uniform by impurity effect according to the increase of gap. As a result the characteristics for AC breakdown, the dielectric strength was increased to 90[$^{\circ}C$] but decreased over 90[$^{\circ}C$] in the temperature range.

  • PDF

Natural Circulation Flow Investigation in a Rectangular Channel (사각 단면 채널에서의 자연순환 유동에 관한 연구)

  • Ha, Kwang-Soon;Kim, Jae-Cheol;Park, Rae-Joon;Kim, Sang-Baik;Hong, Seong-Wan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3086-3091
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled-down as the half height and 1/238 rectangular channel area of the APR1400 reactor vessel. As the water inlet area increased, the natural circulation mass flow rate asymptotically increased, that is, it converged at a specific value. And the circulation mass flow rate also increased as the outlet area, injected air flow rate, and outlet height increased. But the circulation mass flow rate was not changed along with the external water level variation if the water level was higher than the outlet height.

  • PDF

Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

  • Yang, Zonghao;Meng, Zhaoming;Yan, Changqi;Chen, Kailun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1617-1628
    • /
    • 2017
  • In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

Detection of Current Signal and Thermal Characteristics of Electric Fan Operated in Various Situations (선풍기의 운전 상황별 발열특성 및 전류신호 검출)

  • Kim, Doo-Hyun;Lee, Heung-Su
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.20-27
    • /
    • 2014
  • Cooling equipment is the frequent occurrence of fire despite the absence of the heating element. National fire statistics in 2013 show that a total of 263 fires occurred in the cooling equipment and the number of electric fan has 145 fire cases. This is accounted for 55.1% of the whole. Electric fan is the electrical appliance that the heat is generated on the winding wire and the iron core. If such characteristic is not controled properly, fire would break out at the electric fan. also there is a gap filled with an insulator between connection terminals of the capacitor in the electric fan. But in case that the gap on the capacitor is covered with some conductive material such as dust, there would be a fire as well caused by electrical heating locally. Although many studies related with those have been conducted, electric fan fire is continuously occurred. In this study, thermal characteristics and current signal in various conditions such as the heat generation of windings including iron cores of the motor and the dielectric breakdown of terminals on the capacitor connected to the motor were detected. In order to measure the maximum temperature, "third level" wind velocity button was pushed and the time selection switch to "continuation" was set. Analyzed data would be available for the fire safety of the electric fan.