• Title/Summary/Keyword: ganglion cell

Search Result 195, Processing Time 0.037 seconds

Prenatal Development of Gonadotropin Releasing Hormone (GnRH) Neurons in the Rat Brain (흰쥐 태아 뇌에서 GnRH 신경세포의 초기발생과정)

  • 이영기;최완성
    • The Korean Journal of Zoology
    • /
    • v.34 no.4
    • /
    • pp.491-499
    • /
    • 1991
  • The present experiment was carried out 1) to study the developmental topography of GnRH neuronal system and 2) to characterize the cellular localization of GnRH neurons in the prenatal brain development of the rat. At embryonic day (I) 14.5, immunoreactive cell bodies of GnRH were first seen in the nasal septum and in the ganglion terminate located in the ventral protion of the caudal olfactory bulb. Two days later (E 16.5), GnRH-containing neurons were observed at the level of olfactory tubercle and diagonal band of Broca, which is the first appearance in the intracerebral region. From 118.5, the topographic pattern of immunoreactive GnRH perikarya was similar to that of adult rats. The present data suggest that GnRH neurons were originated from the nasal septum and gradually extended to the hvpothalamic regions with increasing fetal age.

  • PDF

Sex Pheromone Biosynthesis in the Legume Pod Borer, Maruca vitrata (Lepidoptera: Crambidae) (콩명나방의 성페로몬 생합성)

  • Cha, Wook Hyun;Park, Jung Jun;Lee, Dae-Weon
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • Pheromone biosynthesis in the pheromone gland is triggered from release of pheromone biosynthesis-activating neuropeptide (PBAN) synthesized in the suboesophageal ganglion. PBAN binds to its receptor on the epithelial cell membrane and activates signal transduction pathways for the pheromone biosynthesis. This study reviews sex pheromone, PBAN and its receptor, and pheromone biosynthesis pathway of Maruca vitrata.

Comparison of Retinal Ganglion Cell Responses to Different Voltage Stimulation Parameters in Normal and rd1 Mouse Retina (정상망막과 변성망막에서 전압자극 파라미터 변화에 따른 망막신경절세포의 반응 비교)

  • Ye, Jang-Hee;Ryu, Sang-Baek;Kim, Kyung-Hwan;Goo, Yong-Sook
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.209-217
    • /
    • 2010
  • Retinal prostheses are being developed to restore vision for the blind with retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Since retinal prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. Therefore, in this paper, we focused on retinal ganglion cell (RGC) responses to different voltage stimulation parameters and compared threshold charge densities in normal and rd1 mice. For this purpose, we used in vitro preparation for the retina of normal and rd1 mice on micro-electrode arrays. When the neural network of rd1 mouse retinas is stimulated with voltage-controlled pulses, RGCs in degenerated retina also respond to voltage amplitude or voltage duration modulation as well in wild-type RGCs. But the temporal pattern of RGCs response is very different; in wild-type RGCs, single peak within 100 ms appears while in RGCs in degenerated retina multiple peaks (~4 peaks) with ~10 Hz rhythm within 400 ms appear. The thresholds for electrical activation of RGCs are overall more elevated in rd1 mouse retinas compared to wild-type mouse retinas: The thresholds for activation of RGCs in rd1 mouse retinas were on average two times higher ($70.50{\sim}99.87\;{\mu}C/cm^2$ vs. $37.23{\sim}61.65\;{\mu}C/cm^2$) in the experiment of voltage amplitude modulation and five times higher ($120.5{\sim}170.6\;{\mu}C/cm^2$ vs. $22.69{\sim}37.57\;{\mu}C/cm^2$) in the experiment of voltage duration modulation than those in wild-type mouse retinas. This is compatible with the findings from human studies that the currents required for evoking visual percepts in RP patients is much higher than those needed in healthy individuals. These results will be used as a guideline for optimal stimulation parameters for upcoming Korean-type retinal prosthesis.

Enhanced Expression of Phospholipase C-$\gamma$1 in Regenerating Murine Neuronal Cells by Pulsing Electromagnetic Field (흰쥐에서 편측 반회후두신경 재지배 후 Phopholipase C-$\gamma$1(PLC-$\gamma$1)의 발현과 후두기능회복과의 관계)

  • 정성민;신혜정;김성숙;김문정;윤선옥;박수경;신유리;김진경
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.12 no.2
    • /
    • pp.126-132
    • /
    • 2001
  • Background and Objectives : Signal traduction through phospholipase C(PLC) participate in the regulation of cell growth and differentiation. Growth factors bind to their receptors and thereby induce tyrosine phophorylation of the phospholipase C-${\gamma}$1(PLC-${\gamma}$1). PLC-${\gamma}$1 is a substrate for several receptor tyrosine kinases and its catalytic activity is increased by tyrosine phosphorylation. Tyrosine kinase phosphorylation of PLC-${\gamma}$1 stimulates PLC activation and cell proliferation. However the signal transduction pathway and the significance of PLC in injured recurrent laryngeal nerve regeneration is unknown. Therefore after we obtained fuctionally recovered rats using PEMF in this study, we attempt to provide some evidence that PLC plays a role in nerve regeneration itself and regeneration related to PEMF through the analysis of the difference between fucntional recovery group and non-recovery group in the recurrent laryngeal nerve. Materials and Method : Using 32 healthy male Sprague-Dawley rats, transections and primary anastomosis were performed on their left recurrent laryngeal nerves. Rats were then randomly assigned to 2 groups. The experimental group(n=16) received PEMS by placing them in custom cages equipped with Helm-holz coils(3hr/day, 5days/wk, for 12wk). The control group(n=16) were handled the same way as the experimental group, except that they did not receive PEMS. Laryngo-videoendoscopy was performed before and after surgery and followed up weekly. Laryngeal EMG was obtained in both PCA and TA muscles. Immunohistochemisty staining and Western blotting analysis using monoclonal antibody was performed to detect PLC-${\gamma}$1 in recurrent laryngeal nerve and nodose ganglion. Results : 10 rats(71%) in experimental group and 4 rats(38%) in the control group showed recovery of vocal fold motion. Functionally-recoverd rats show PLC-${\gamma}$1 positive cells in neuron and ganglion cells after 12 weeks from nerve injury. Conclusion : This study shows that PLC1-${\gamma}$ involved in singnal trasduction pathway in functinal recovery of injured recurrent laryngeal nerve and PEMF enhance the functional recovery by effect on this molecule.

  • PDF

Early Growth and Characteristic of Histological Eye Development in Post Parturition Dark banded Rockfish, Sebastes inermis (볼락, Sebastes inermis 산출 후 초기 성장 및 눈의 조직학적 발달 특성)

  • Park, In-Seok;Park, Hye-Jung;Gil, Hyun-Woo;Goo, In-Bon
    • Development and Reproduction
    • /
    • v.16 no.2
    • /
    • pp.101-106
    • /
    • 2012
  • Importance of behavior factors or environmental factors in visual organization and visual function of fish is treated with great care in visual ecology, and there is no study about initial ocular growth and development on the dark banded rockfish, Sebastes inermis. Thus, this study was performed. The total length, head length, head depth, eye diameter and lens diameter of the dark banded rockfish showed positive allometric relationship between parturition stage and 60 days post-parturition (dpp). The increase in total length relative to head length and head depth, head length growth relative to eye diameter and lens diameter, and head depth growth relative to eye and lens diameter were nearly isometric. The eyes were formed completely at parturtion stage. At this age, the eye has an optic nerve fiber layer, a ganglion cell layer, an inner plexiform layer, an inner nuclear layer, an outer plexiform layer, an outer nuclear layer, an outer limiting membrane, a rod and cone layer and an epithelial layer. Thickness of retina at 60 dpp was higher than that of at parturition stage. During this experiment, the proportion of the rod and cone layer, outer nuclear layer, and optic nerve fiber layer of retina were significantly increased, while the proportion of the outer plexiform layer, inner nuclear layer and ganglion cell layer of retina were significantly decreased (P<0.05). The essential demands that must be met by the retina in this species pertain to light sensitivity and spatial resolution.

Thickness of the Macula, Retinal Nerve Fiber Layer, and Ganglion Cell-inner Plexiform Layer in the Macular Hole: The Repeatability Study of Spectral-domain Optical Coherence Tomography

  • Lee, Woo Hyuk;Jo, Young Joon;Kim, Jung Yeul
    • Korean Journal of Ophthalmology
    • /
    • v.32 no.6
    • /
    • pp.506-516
    • /
    • 2018
  • Purpose: We measured the thicknesses of the ganglion cell and inner plexiform layer (GCIPL), the macula, and the retinal nerve fiber layer (RNFL) using spectral-domain optical coherence tomography in patients with idiopathic macula holes to analyze the repeatability of these measurements and compare them with those of the fellow eye. Methods: We evaluated 85 patients who visited our retinal clinic. The patients were divided into two groups according to their macular hole size: group A had a size of $<400{\mu}m$, while group B had a size of ${\geq}400{\mu}m$. Repeatability was determined by comparing the thicknesses of the GCIPL, macula, and RNFL with those of the normal fellow eye. Results: The average central macular thickness in patients with macular holes was significantly thicker than that in the normal fellow eye ($343.8{\pm}78.6$ vs. $252.6{\pm}62.3{\mu}m$, p < 0.001). The average thickness of the GCIPL in patients with macular holes was significantly thinner than that in the normal fellow eye ($56.1{\pm}23.4$ vs. $77.1{\pm}12.8{\mu}m$, p < 0.001). There was no significant difference in the average RNFL thickness between eyes with macular holes and fellow eyes ($92.4{\pm}10.0$ vs. $95.5{\pm}10.7{\mu}m$, p = 0.070). There were also no significant differences in the thicknesses of the GCIPL and RNFL among the two groups (p = 0.786 and p = 0.516). The intraclass correlation coefficients for the macula and RNFL were 0.994 and 0.974, respectively, in patients with macular holes, while that for the GCIPL was 0.700. Conclusions: Macular contour change with macular hole results in low repeatability and a tendency of thinner measurement regarding GCIPL thickness determined via spectral-domain optical coherence tomography. The impact of changes in the macular shape caused by macular holes should be taken into consideration when measuring the GCIPL thickness in patients with various eye diseases such as glaucoma and in those with neuro-ophthalmic disorders.

Differential Expression of NCAM-180 in the Olfactory System and Retina of the Rat

  • Hyeyoung Koo
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.259-267
    • /
    • 1999
  • The expression of the neural cell adhesion molecule-180 (NCAM-180), which accumulates at contact sites between cells and may be responsible for the stabilization of cell contacts, was studied in the olfactory system and retina of developing and adult rats. From embryonic day 12 onwards, which was the earliest stage examined, the NCAM-180 pathway directing to the presumptive olfactory bulb was observed. In later stages, olfactory neurons and fasciculating axons in the olfactory epithelium and nerve fiber layer and glomeruli of the olfactory bulb expressed NCAM-180. From postnatal day 0, immunolabelling pattern of the olfactory epithelium and olfactory bulb were the same as that during later stages. NCAM-180 immunoreactivity was present on differentiating retinal cells and persisted on those cells throughout adulthood. However, contrary to the olfactory nerve which remained detectable in the adult, the optic nerve was only transiently expressed with NCAM-180 and was no longer detectable in the adult. The presence of NCAM-180 in olfactory tissues suggests their possible role in pathfinding, differentiation, fasciculation and synaptic plasticity. The continued presence of NCAM-180 in the olfactory system examined may underlie its continuous cell turnover and regenerative capacity. The continuous expression of NCAM-180 in ganglion cells, bipolar cells and photoreceptor cells, also suggests potential regenerating capability and some plastic functions for these cells in the adult. Since the expression of NCAM-180 by the optic nerve was restricted to the period of special histogenetic events, for example, during axonal growth and synaptogenesis, it is possible that the lack of NCAM-180 in the adult optic nerve might cause a nonpermissive environment for the regeneration and result in regenerative failure of this system.

  • PDF

The Role of Somatostatin in Nociceptive Processing of the Spinal Cord in Anesthetized Cats

  • Jung, Sung-Jun;Park, Joo-Min;Lee, Jun-Ho;Lee, Ji-Hye;Kim, Sang-Jeong;Kim, Jun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.365-373
    • /
    • 1999
  • Somatostatin (SOM) is one of the major neuropeptides in dorsal root ganglion cells, but its role in spinal nociceptive process has not been well known. In present study we aimed to investigate the effect of SOM on the response of dorsal horn neurons to the various types of peripheral nociceptive stimuli in anesthetized cats. Using carbon-filament microelectrode, the single cell activities of wide dynamic range neurons were recorded from the lumbosacral enlargement after noxious mechanical (squeeze), thermal (radiant heat lamp) and cold (dry ice) stimulation to the receptive field. Sciatic nerve was stimulated electrically to evoke $A\;{\delta}-$ and C-nociceptive responses. SOM analogue, octreotide $(10\;{\mu}g/kg),$ was applied intravenously and the results were compared with those of morphine (2 mg/kg, MOR). Systemic SOM decreased the cellular responses to the noxious heat and the mechanical stimulation, but increased those to the cold stimulation. In the responses to the electric stimuli of sciatic nerve, $A\;{\delta}-nociceptive$ response was increased by SOM, while C-nociceptive response was decreased. On the other hand, MOR inhibited the dorsal horn cell responses to all the noxious stimuli. From the above results, it is concluded that SOM suppresses the transmission of nociceptive heat and mechanical stimuli, especially via C-fiber, while it facilitates those of nociceptive cold stimuli via $A\;{\delta}-fiber$.

  • PDF

Dynamic properties of the retinal neurons by using of the intracellular recording method (세포내 기록법으로써 검출한 망막 신경원의 동적 특성)

  • 이성종;정창섭;배선호
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.95-104
    • /
    • 1998
  • The dynamic properties of the 3rd-order neuron of the retina was investigated by using conventional intracellular recording techniques. Experiments were performed in the superfused retina-eyecup preparation of the channel catfish, Ictalurus punctatus. The cornea, iris, lens, and vitreous were removed by absorption with Kimwipe tissue under the dissection microscope thereby exposing the retina in a hemi -eyecup. The electrical signal was amplified by electrometer, viewed on oscilloscope. Regular signals from the cells were recorded on a penwriter and stored by data recorder and computer. Full-field, spot or annular light stimuli were generated on a computer monitor and focused onto the retina. Baclofen hyperpolarized the dark membrane potential, suppressed sustained component and enhanced transient component of the ON-sustained cell with a large transient component, but did not affect the surround antagonism of the cell. Baclofen selectively suppressed responses evoked by moving bar light stimuli on the ON-OFF transient cell. The results suggest that transient cells have directional selectivity in the inner retina. These dynamic properties of amacrine and ganglion cells were modulated by baclofen. Therefore, it is presumed that there is baclofen-induced directional selectivity in ON-OFF transient cells in the catfish retina.

  • PDF

Involvement of a LiCl-Induced Phosphoprotein in Pigmentation of the Embryonic Zebrafish (Danio rerio) (LiCl에 의해 유도되는 phosphoprotein이 embryonic zebrafish (Danio rerio)의 pigmentation에 미치는 영향)

  • Jin, Eun-Jung;Thibaudeau, Giselle
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1219-1224
    • /
    • 2008
  • The embryonic zebrafish (Danio rerio) is rapidly becoming an important model organism for studies of early events in vertebrate development. Neural crest-derived pigment cell precursors of the embryonic zebrafish give rise to melanophores, xanthophores, and/or iridophores. Cell-signaling mechanisms related to the development of pigmentation and pigment pattern formation remain obscure. In this study, zebrafish embryos were treated with various signaling-related molecules - LiCl (an inositol-phosphatase inhibitor), forskolin (a protein kinase-A activator), a combination of LiCl/forskolin, and LiCl/heparin (an IP3 inhibitor) in order to identify the mechanisms involved in pigmentation. LiCl treatment resulted in ultrastructural and morphological alterations of melanophores. To identify the possible proteins responsible for this ultrastructural and morphological change, phosphorylation patterns in vitro and in vivo were analyzed. LiCl and LiCl/forskolin treatment elicited dramatic increases in the phosphorylation of a 55-kDa protein which was inhibited by heparin treatment. LiCl treatment also induced phosphorylation of a 55-kDa protein in melanophores purified from adult zebrafish. Collectively these results suggest that a LiCl-induced 55-kDa phosphoprotein plays a role in melanophore morphology and ultrastructure and ultimately effects gross pigmentation.