• 제목/요약/키워드: gan

검색결과 874건 처리시간 0.024초

eGAN 모델의 성능개선을 위한 에지 검출 기법 (An Edge Detection Technique for Performance Improvement of eGAN)

  • 이초연;박지수;손진곤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권3호
    • /
    • pp.109-114
    • /
    • 2021
  • GAN(Generative Adversarial Network, 생성적 적대 신경망)은 이미지 생성모델로서 생성기 네트워크와 판별기 네트워크로 구성되며 실제 같은 이미지를 생성한다. GAN에 의해 생성된 이미지는 실제 이미지와 유사해야 하므로 생성된 이미지와 실제 이미지의 손실 오차를 최소화하는 손실함수(loss function)를 사용한다. 그러나 GAN의 손실함수는 이미지를 생성하는 학습을 불안정하게 만들어 이미지의 품질을 떨어뜨린다는 문제점이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 GAN 관련 연구를 분석하고 에지 검출(edge detection)을 이용한 eGAN(edge GAN)을 제안한다. 실험 결과 eGAN 모델이 기존의 GAN 모델보다 성능이 개선되었다.

다중 스케일 영상을 이용한 GAN 기반 영상 간 변환 기법 (GAN-based Image-to-image Translation using Multi-scale Images)

  • 정소영;정민교
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.767-776
    • /
    • 2020
  • GcGAN은 기하학적 일관성을 유지하며 영상 간 스타일을 변환하는 딥러닝 모델이다. 그러나 GcGAN은 회전이나 반전(flip) 등의 한정적인 기하 변환으로 영상의 형태를 보존하기 때문에 영상의 세밀한 형태 정보를 제대로 유지하지 못하는 단점을 가지고 있다. 그래서 본 연구에서는 이런 단점을 개선한 새로운 영상 간 변환 기법인 MSGcGAN(Multi-Scale GcGAN)을 제안한다. MSGcGAN은 GcGAN을 확장한 모델로서, 다중 스케일의 영상을 동시에 학습하여 스케일 불변 특징을 추출함으로써, 영상의 의미적 왜곡을 줄이고 세밀한 정보를 유지하는 방향으로 영상 간 스타일 변환을 수행한다. 실험 결과에 의하면 MSGcGAN은 GcGAN보다 정량적 정성적 측면에서 모두 우수하였고, 영상의 전체적인 형태 정보를 잘 유지하면서 스타일을 자연스럽게 변환함을 확인할 수 있었다.

A Study on GAN Algorithm for Restoration of Cultural Property (pagoda)

  • Yoon, Jin-Hyun;Lee, Byong-Kwon;Kim, Byung-Wan
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.77-84
    • /
    • 2021
  • 오늘날 문화재 복원은, 기존 자료와 전문가에 의존하는 것과 더불어 최신 IT 기술을 적용하여 복원하고 있다. 하지만 새로운 자료가 나와서 기존 복원이 틀리게 되는 경우, 복원하는데 너무 오랜 시간이 걸릴 때도 있다. 그리고 예상과 다른 결과가 나올 가능성도 있다. 이에 우리는 중요 문화재의 복원을 인공지능을 이용하여 빠르게 복원을 해 보고자 한다. 최근에 Generative Adversarial Networks(GANs) 알고리즘에서 DcGAN[2] 알고리즘이 나오면서 이미지 생성, 복원 분야가 지속해서 발전하고 있다. 이에 본 연구에서는 다양한 GAN 알고리즘을 문화재 복원에 GAN 알고리즘을 적용해 보았다. DcGAN과 StyleGAN을 적용하였으며, 유의미한 결과를 얻었다. GAN 알고리즘 중 DCGAN과 Style GAN 알고리즘을 실험한 결과 DCGAN 알고리즘은 학습이 진행되었으며, 낮은 해상도로 탑 이미지가 생성되는 것을 확인했다. 그리고 Style GAN 알고리즘에서도 역시 학습이 진행 되었으며, 탑 이미지가 생성되었다. 결론적으로 GAN 알고리즘을 사용하여 높은 해상도의 탑 이미지를 구할 수 있게 되었다.

딥러닝 기반 단일 이미지 생성적 적대 신경망 기법 비교 분석 (Deep Learning-based Single Image Generative Adversarial Network: Performance Comparison and Trends)

  • 정성훈;공경보
    • 방송공학회논문지
    • /
    • 제27권3호
    • /
    • pp.437-450
    • /
    • 2022
  • 생성적 적대 신경망(GAN, Generative Adversarial Networks)는 이미지 생성 분야에서 주목할 만한 발전을 이루었다. 하지만 큰 데이터 셋에서 불안정한 모습을 보인다는 한계 때문에 다양한 응용 분야에 쉽게 적용하기 어렵다. 단일 이미지 생성적 적대 신경망은 한장의 이미지의 내부 분포를 잘 학습하여 다양한 영상을 생성하는 분야이다. 큰 데이터셋이 아닌 단 한장만 학습함으로써 안정적인 학습이 가능하며 이미지 리타겟팅, 이미지 조작, super resolution 등 다양한 분야에 활용 가능하다. 본 논문에서는 SinGAN, ConSinGAN, InGAN, DeepSIM, 그리고 One-Shot GAN 총 다섯 개의 단일 이미지 생성적 적대 신경망을 살펴본다. 우리는 각각의 단일 이미지 생성적 적대 신경망 모델들의 성능을 비교하고 장단점을 분석한다.

Enhanced ACGAN based on Progressive Step Training and Weight Transfer

  • Jinmo Byeon;Inshil Doh;Dana Yang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권3호
    • /
    • pp.11-20
    • /
    • 2024
  • AI(Artificial Intelligence)의 다양한 모델 중 생성 모델, 특히 GAN(Generative Adversarial Network)은 이미지 처리, 밀도 추정, 스타일 전이 등 다양한 응용 분야에서 성공을 거두었다. 이러한 GAN은 CGAN(Conditional GAN), CycleGAN, BigGAN 등의 방식으로 확장 및 개선되었지만 재난 시뮬레이션, 의료 분야, 도시 계획 등 특정 분야에서는 데이터 부족과 불안정한 학습에 의한 이미지 왜곡 문제로 실제 시스템 적용에 문제가 되고 있다. 본 논문에서는 클래스 항목을 판별하는 ACGAN(Auxiliary Classifier GAN) 구조를 기반으로 기존 PGGAN(Progressive Growing of GAN)의 점진적 학습 방식을 활용한 새로운 점진적 단계의 학습 방법론 PST(Progressive Step Training)를 제안한다. PST 모델은 기존 방법 대비 70.82% 빠른 안정화, 51.3% 낮은 표준 편차, 후반 고해상도의 안정적 손실값 수렴 그리고 94.6% 빠른 손실 감소를 달성한다.

MSaGAN: Improved SaGAN using Guide Mask and Multitask Learning Approach for Facial Attribute Editing

  • Yang, Hyeon Seok;Han, Jeong Hoon;Moon, Young Shik
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.37-46
    • /
    • 2020
  • 최근 얼굴 속성 편집(facial attribute editing)의 연구는 GAN(Generative Adversarial Net)과 인코더-디코더(encoder-decoder) 구조를 활용하여 사실적인 결과를 얻고 있다. 최신 연구 중 하나인 SaGAN(Spatial attention GAN)은 공간적 주의 기제(spatial attention mechanism)를 활용하여 얼굴 영상에서 원하는 속성만을 변경할 방법을 제안하였다. 그러나 불충분한 얼굴 영역 정보로 인하여 때로 부자연스러운 결과를 얻는 경우가 발생한다. 본 논문에서는 기존 연구의 한계점을 개선하기 위하여 유도 마스크(guide mask)를 학습에 활용하고, 다중작업 학습(multitask learning) 접근을 적용한 개선된 SaGAN(MSaGAN)을 제안한다. 폭넓은 실험을 통해 마스크 손실 함수와 신경망 구조에 따른 얼굴 속성 편집의 결과를 비교하여 제안하는 방법이 기존보다 더 자연스러운 결과를 효율적으로 얻을 수 있음을 보인다.

다양한 크기의 식별자를 적용한 Cycle GAN을 이용한 다목적실용위성 5호 SAR 영상 색상 구현 방법 (The Method for Colorizing SAR Images of Kompsat-5 Using Cycle GAN with Multi-scale Discriminators)

  • 구원회;정대원
    • 대한원격탐사학회지
    • /
    • 제34권6_3호
    • /
    • pp.1415-1425
    • /
    • 2018
  • 다목적실용위성 5호는 국내 최초로 영상레이더(SAR)가 탑재된 지구관측위성이다. SAR 영상은 위성에 부착된 안테나로부터 방사된 마이크로파가 물체로부터 반사된 신호를 수신하여 생성된다. SAR는 대기 중의 입자의 크기에 비해 파장이 긴 마이크로파를 사용하기 때문에 구름이나 안개 등을 투과할 수 있으며, 주야간 구분 없이 고해상도의 영상을 얻을 수 있다. 하지만, SAR 영상에는 색상 정보가 부재하는 제한점이 존재한다. 이러한 SAR 영상의 제한점을 극복하기 위해, 도메인 변환을 위해 개발된 딥러닝 모델인 Cycle GAN을 활용하여 SAR 영상에 색상을 대입하는 연구를 수행하였다. Cycle GAN은 unpaired 데이터셋 기반의 무감독 학습으로 인해 학습이 불안정하다. 따라서 Cycle GAN의 학습 불안정성을 해소하고, 색상 구현의 성능을 향상하기 위해 다중 크기 식별자를 적용한 MS Cycle GAN을 제안하였다. MS Cycle GAN과 Cycle GAN의 색상 구현 성능을 비교하기 위하여 두 모델이 Florida 데이터셋을 학습하여 생성한 영상을 정성적 및 정량적으로 비교하였다. 다양한 크기의 식별자가 도입된 MS Cycle GAN은 기존의 Cycle GAN과 비교하여 학습 결과에서 생성자 및 식별자 손실이 대폭 감소되었고, 나뭇잎, 강, 토지 등의 영역 특성에 부합하는 색상이 구현되는 것을 확인하였다.

ACL-GAN: 새로운 loss 를 사용하여 하이퍼 파라메터 탐색속도와 학습속도를 향상시킨 영상변환 GAN (ACL-GAN: Image-to-Image translation GAN with enhanced learning and hyper-parameter searching speed using new loss function)

  • 조정익;윤경로
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.41-43
    • /
    • 2019
  • Image-to-image 변환에서 인상적인 성능을 보이는 StarGAN 은 모델의 성능에 중요한 영향을 끼치는 adversarial weight, classification weight, reconstruction weight 라는 세가지 하이퍼파라미터의 결정을 전제로 하고 있다. 본 연구에서는 이 중 conditional GAN loss 인 adversarial loss 와 classification loss 를 대치할 수 있는 attribute loss를 제안함으로써, adversarial weight와 classification weight 를 최적화하는 데 걸리는 시간을 attribute weight 의 최적화에 걸리는 시간으로 대체하여 하이퍼파라미터 탐색에 걸리는 시간을 획기적으로 줄일 수 있게 하였다. 제안하는 attribute loss 는 각 특징당 GAN 을 만들 때 각 GAN 의 loss 의 합으로, 이 GAN 들은 hidden layer 를 공유하기 때문에 연산량의 증가를 거의 가져오지 않는다. 또한 reconstruction loss 를 단순화시켜 연산량을 줄인 simplified content loss 를 제안한다. StarGAN 의 reconstruction loss 는 generator 를 2 번 통과하지만 simplified content loss 는 1 번만 통과하기 때문에 연산량이 줄어든다. 또한 이미지 Framing 을 통해 배경의 왜곡을 방지하고, 양방향 성장을 통해 학습 속도를 향상시킨 아키텍쳐를 제안한다.

  • PDF

GAN 기반 데이터 증강을 통한 반려동물 종 분류 (Pet-Species Classification with Data augmentation based on GAN)

  • 박찬;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.930-932
    • /
    • 2021
  • 영상처리에서 데이터 증강(Data augmentation)은 단순히 사진을 편집하여 사진의 개수를 증강하는 것이다. 단순 데이터 증강은 동물의 반점이나 다양한 색깔을 반영하지 못하는 한계가 있다. 본 논문에서는 GAN을 통한 데이터 증강 기법을 제안한다. 제안하는 방법은 CycleGAN을 사용하여 GAN 이미지를 생성한 뒤, 데이터 증강을 거쳐 동물의 종 분류 정확도를 측정한다. 정확도 비교를 위해 일반 사진으로만 구성한 집단과 GAN 사진을 추가한 두 집단으로 나누었다. ResNet50을 사용하여 종 분류 정확도를 측정한다.

An Efficient CT Image Denoising using WT-GAN Model

  • Hae Chan Jeong;Dong Hoon Lim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권5호
    • /
    • pp.21-29
    • /
    • 2024
  • CT 촬영 시 방사선량을 줄이면 피폭 위험성을 낮출 수 있으나, 영상 해상도가 크게 저하 될 뿐아니라 잡음(noise) 발생으로 인해 진단의 효용성이 떨어진다. 따라서, CT 영상에서의 잡음제거는 영상복원 분야에 있어 매우 중요하고 필수적인 처리 과정이다. 영상 영역에서 잡음과 원래 신호를 분리하여 잡음만을 제거하는 것은 한계가 있다. 본 논문에서는 웨이블릿 변환 기반 GAN 모델 즉, WT-GAN(wavelet transform-based GAN) 모델을 이용하여 CT 영상에서 효과적으로 잡음 제거하고자 한다. 여기서 사용된 GAN 모델은 U-Net 구조의 생성자와 PatchGAN 구조의 판별자를 통해 잡음제거 영상을 생성한다. 본 논문에서 제안된 WT-GAN 모델의 성능 평가를 위해 다양한 잡음, 즉, 가우시안 잡음(Gaussian noise), 포아송 잡음 (Poisson noise) 그리고 스펙클 잡음 (speckle noise)에 의해 훼손된 CT 영상을 대상으로 실험하였다. 성능 실험 결과, WT-GAN 모델은 전통적인 필터 즉, BM3D 필터뿐만 아니라 기존의 딥러닝 모델인 DnCNN, CDAE 모형 그리고 U-Net GAN 모형보다 정성적이고, 정량적인 척도 즉, PSNR (Peak Signal-to-Noise Ratio) 그리고 SSIM (Structural Similarity Index Measure) 면에서 우수한 결과를 보였다.