• Title/Summary/Keyword: gamma-rays%3A galaxies

Search Result 8, Processing Time 0.024 seconds

Diagnostics of Diffuse Two-Phase Matter Using Techniques of Positron Annihilation Spectroscopy in Gamma-Ray and Optical Spectra

  • Doikov, Dmytry;Yushchenko, Alexander;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.115-119
    • /
    • 2019
  • This paper is a part of the series on positron annihilation spectroscopy of two-phase diffuse gas-and-dust aggregates, such as interstellar medium and the young remnants of type II supernovae. The results obtained from prior studies were applied here to detect the relationship between the processes of the annihilation of the K-shell electrons and incident positrons, and the effects of these processes on the optical spectra of their respective atoms. Particular attention was paid to the Doppler broadening of their optical lines. The relationship between the atomic mass of the elements and the Doppler broadening, ${\Delta}{\lambda}_D$ (${\AA}$), of their emission lines as produced in these processes was established. This relationship is also illustrated for isotope sets of light elements, namely $^3_2He$, $^6_3Li$, $^7_3Be$, $^{10}_5B$ and $^{11}_5B$. A direct correlation between the ${\gamma}-line$ luminosity ( $E_{\gamma}=1.022MeV$) and ${\Delta}{\lambda}_D$ (${\AA}$) was proved virtually. Qualitative estimates of the structure of such lines depending on the positron velocity distribution function, f(E), were made. The results are presented in tabular form and can be used to set up the objectives of further studies on active galactic nuclei and young remnants of type II supernovae.

A CLUSTER SURVEY AROUND THE UNIDENTIFIED EGRET SOURCES

  • KAWASAKI WATARU;TOTANI TOMONORI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.141-144
    • /
    • 2005
  • Based on optical galaxy data, we executed a systematic search for galaxy clusters around the 15 steady unidentified EGRET GeV gamma-ray sources in high Galactic-latitude sky ([b] > $30^{\circ}$). We found a strong correlation with 3.7$\sigma$ level between close cluster pairs (merging cluster candidates) and the unidentified EGRET sources, though, in contrast, no correlation with single clusters. This result implies that merging clusters of galaxies are a possible candidate for the origin of high galactic-latitude, steady unidentified EGRET gamma-ray sources.

A SPECTROSCOPIC STUDY OF THE SEYFERT GALAXY MCG-2-58-22

  • Choi, Chul-Sung;Dotani, Tadayasu;Chang, Heon-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.3
    • /
    • pp.339-344
    • /
    • 2005
  • We present analysis results of the energy spectra of MCG-2-58-22 associated with occasional flares which appear in a long-term X-ray light curve. We measure an intrinsic power-law slope of this object to be ${\Gamma}=1.74{\pm}0.02$ in the energy range of ${\sim}1-5keV$ and find that this slope is little affected by flares. We confirm that there exists a broad excess emission above 5 keV to the power-law continuum. The excess emission is less variable compared with a flux variation of flare and tends to be relatively weak during flares. A soft X-ray spectrum is also found to change, implying the presence of a variable soft component. We discuss the implications of these spectral variations.

NOVEL PICTURE OF THE AGN CENTRAL ENGINE ESTABLISHED BY X-RAY AND OPTICAL SIMULTANEOUS STUDIES

  • NODA, HIROFUMI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.417-421
    • /
    • 2015
  • We analyzed 0.5-45 keV data of NGC 3227 observed by Suzaku six times between 2008 October 28 and December 2. The count-count plot between the 0.5-3 keV and 3-10 keV bands exhibits a clear break, separating the data into bright and faint phases. Applying the difference spectrum method and time-averaged spectral fits to the phase data, we found the presence of two kinds of variable primary X-rays, (1) a hard primary component with ${\Gamma}{\sim}1.7$ dominating in the faint phase and (2) a soft primary continuum with ${\Gamma}{\sim}2.4$ appearing in the bright phase, both affected by partial absorption. Considering their timing and spectral characteristics, component (1) is presumably identical to a Compton continuum in the low/hard state, while component (2) may correspond to the hard tail emission in the high/soft state, or compact-jet emission. In that case, an accretion ow onto the central super massive black hole in NGC 3227 can be interpreted to include the two different states.

A Model for Diffusive Shock Acceleration of Protons in Intracluster Shocks and Gamma-ray and Neutrino Emissions from Clusters of Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.54.3-54.3
    • /
    • 2019
  • During the formation of large-scale structures in the universe, shocks with the sonic Mach number Ms <~ 5 are naturally induced by supersonic flow motions of baryonic matter in the intracluster medium (ICM). Cosmic rays (CRs) are expected to be accelerated via diffusive shock acceleration (DSA) at these ICM shocks, although the existence of CR protons in the ICM remains to be confirmed through gamma-ray observations. Based on the results obtained from kinetic plasma simulations, we build an analytic DSA model for weak, quasi-parallel shocks in the test-particle regime. With our DSA model, the CR acceleration efficiency ranges ~ 0.001 - 0.02 in supercritical quasi-parallel shocks with sonic Mach number Ms ~ 2.25 - 5, and the acceleration would be negligible in subcritical shocks wth Ms <~ 2.25. Adopting our DSA model, we estimate gamma-ray and neutrino emissions from clusters of galaxies by performing cosmological hydrodynamic simulations. The estimated gamma-ray flux is below the Fermi-LAT upper limit. In addition, the possible neutrino emission due to the decay of charged pions in galaxy clusters would be about <~ 1% of the atmospheric neutrino intensity in the energy range of <~ 100 GeV. In this talk, we will discuss the implication of our results.

  • PDF

MASSIVE BLACK HOLE EVOLUTION IN RADIO-LOUD ACTIVE GALACTIC NUCLEI

  • FLETCHER ANDRE B.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.177-187
    • /
    • 2003
  • Active galactic nuclei (AGNs) are distant, powerful sources of radiation over the entire electromagnetic spectrum, from radio waves to gamma-rays. There is much evidence that they are driven by gravitational accretion of stars, dust, and gas, onto central massive black holes (MBHs) imprisoning anywhere from $\~$1 to $\~$10,000 million solar masses; such objects may naturally form in the centers of galaxies during their normal dynamical evolution. A small fraction of AGNs, of the radio-loud type (RLAGNs), are somehow able to generate powerful synchrotron-emitting structures (cores, jets, lobes) with sizes ranging from pc to Mpc. A brief summary of AGN observations and theories is given, with an emphasis on RLAGNs. Preliminary results from the imaging of 10000 extragalactic radio sources observed in the MITVLA snapshot survey, and from a new analytic theory of the time-variable power output from Kerr black hole magnetospheres, are presented. To better understand the complex physical processes within the central engines of AGNs, it is important to confront the observations with theories, from the viewpoint of analyzing the time-variable behaviours of AGNs - which have been recorded over both 'short' human ($10^0-10^9\;s$) and 'long' cosmic ($10^{13} - 10^{17}\;s$) timescales. Some key ingredients of a basic mathematical formalism are outlined, which may help in building detailed Monte-Carlo models of evolving AGN populations; such numerical calculations should be potentially important tools for useful interpretation of the large amounts of statistical data now publicly available for both AGNs and RLAGNs.

Flux Variation and Structural Change in 3C 84 with Long-Term Monitoring by KVN and KaVA at Millimeter Wavelengths

  • Wajima, Kiyoaki;Kino, Motoki;Kawakatu, Nozomu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.45.2-46
    • /
    • 2017
  • 3C 84 (NGC 1275) is one of the most famous radio galaxies and a lot of VLBI observations have been conducted to date because of its brightness and proximity (z = 0.0176; 1 mas = 0.36 pc). The source is entering a significantly active phase with long-term increase in radio flux at cm wavelengths since 2005, and the increased activity at very-high-energy (VHE) gamma rays. In order to study properties of sub-pc-scale structure and the circumnuclear environment in 3C 84, we have conducted multi-epoch VLBI observations with the Korean VLBI Network (KVN) at 86 and 129 GHz, and monthly monitoring by the KVN and VERA Array (KaVA) at 43 GHz from 2015 August. Following the report in the previous KAS meeting (cf. 2016 KAS Autumn Annual Meeting, [구 GC-10]), we present further results mainly on the basis of twelve-epoch observations with KaVA at 43 GHz. Through the monthly monitoring with KaVA, we found that peak intensity of the pc-scale southern lobe (C3) was increased from $2.60\;Jy\;beam^{-1}$ in 2015 October to $9.80\;Jy\;beam^{-1}$ in 2016 June, corresponding to a flux increase of 3.7 times in eight months. We also detected change in direction of motion of C3 from transversal to outward with respect to C1, concurrently with the beginning of its flux increase in 2015 October. We consider that these phenomena are due to interaction of C3 with the ambient medium, and are related to the gamma-ray flare which has been detected with VHE gamma-ray telescopes such as MAGIC and VERITAS.

  • PDF

STUDY OF ULTRALUMINOUS X-RAY SOURCES IN SOME NEARBY GALAXIES

  • Singha, Akram Chandrajit;Devi, A Senorita
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • We present the results of the spectral and temporal analysis of eight X-ray point sources in five nearby (distance < 20 Mpc) galaxies observed with Chandra. For spectral analysis, an absorbed powerlaw and an absorbed diskblackbody were used as empirical models. Six sources were found to be equally fitted by both the models while two sources were better fitted by the powerlaw model. Based on model parameters, we estimate the X-ray luminosity of these sources in the energy range 0.3 - 10.0 keV, to be of the order of ${\sim}10^{39}ergs\;s^{-1}$ except for one source (X-8) with $L_X>10^{40}ergs\;s^{-1}$. Five of these maybe classified as Ultraluminous X-ray sources (ULXs) with powerlaw photon index within the range, ${\Gamma}{\sim}1.63-2.63$ while the inner disk temperature, kT ~ 0.68 - 1.93 keV, when fitted with the disk blackbody model. The black hole masses harboured by the X-ray point sources were estimated using the disk blackbody model to be in the stellar mass range, however, the black hole mass of one source (X-6) lies within the range $68.37M_{\odot}{\leq}M_{BH}{\leq}176.32M_{\odot}$, which at the upper limit comes under the Intermediate mass black hole range. But if the emission is considered to be beamed by a factor ~ 5, the black hole mass reduces to ${\sim}75M_{\odot}$. The timing analysis of these sources does not show the presence of any short term variations in the kiloseconds timescales.