• Title/Summary/Keyword: gamma-ray bursts

Search Result 50, Processing Time 0.021 seconds

Inhomogeneous Poisson Intensity Estimation via Information Projections onto Wavelet Subspaces

  • Kim, Woo-Chul;Koo, Ja-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.3
    • /
    • pp.343-357
    • /
    • 2002
  • This paper proposes a method for producing smooth and positive estimates of the intensity function of an inhomogeneous Poisson process based on the shrinkage of wavelet coefficients of the observed counts. The information projection is used in conjunction with the level-dependent thresholds to yield smooth and positive estimates. This work is motivated by and demonstrated within the context of a problem involving gamma-ray burst data in astronomy. Simulation results are also presented in order to show the performance of the information projection estimators.

GAMMA-RAY BURST FORMATION ENVIRONMENT: COMPARISON OF REDSHIFT DISTRIBUTIONS OF GRB AFTERGLOWS (감마선 폭발체의 생성 환경: 에너지 영역별 잔유휘광의 거리 분포 비교)

  • Kim, Sung-Eun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.377-384
    • /
    • 2005
  • Since gamma-ray bursts(GRBs) have been first known to science societites in 1973, many scientists are involved in their studies. Observations of GRB afterglows provide us with much information on the environment in which the observed GRBs are born. Study of GRB afterglows deals with longer timescale emissions in lower energy bands (e.g., months or even up to years) than prompt emissions in gamma-rays. Not all the bursts accompany afterglows in whole ranges of waveleogths. It has been suggested as a reason for that, for instance, that radio and/or X-ray afterglows are not recorded mainly due to lower sensitivity of detectors, and optical afterglows due to extinctions in intergalactic media or self-extinctions within a host galaxy itself. Based on the idea that these facts may also provide information on the GRE environment, we analyze statistical properties of GRB afterglows. We first select samples of the redshift-known GRBs according to the wavelength of afterglow they accompanied. We then compare their distributious as a function of redshift, using statistical methods. As a results, we find that the distribution of the GRBs with X-ray afterglows is consistent with that of the GRBs with optical afterglows. We, therefore, conclude that the lower detection rate of optical afterglows is not due to extinctions in intergalactic media.

The Spectral Sharpness Angle of Gamma-ray Bursts

  • Yu, Hoi-Fung;van Eerten, Hendrik J.;Greiner, Jochen;Sari, Re'em;Bhat, P. Narayana;Kienlin, Andreas von;Paciesas, William S.;Preece, Robert D.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.109-117
    • /
    • 2016
  • We explain the results of Yu et al. (2015b) of the novel sharpness angle measurement to a large number of spectra obtained from the Fermi gamma-ray burst monitor. The sharpness angle is compared to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. It is found that more than 91% of the high temporally and spectrally resolved spectra are inconsistent with any kind of optically thin synchrotron emission model alone. It is also found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 58+23−18% of the peak flux. These results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed spectra. Since any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.

A Study of Kinetic Effect on Relativistic Shock using 3D PIC simulation

  • Choi, Eun-Jin;Min, Kyoung-Wook;Choi, Cheong-Rim;Nishikawa, Ken-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.67.1-67.1
    • /
    • 2012
  • Shocks are evolved when the relativistic jets in active galactic nuclei (AGNs), black hole binaries, supernova remnants (SNR) and gamma-ray bursts (GRBs) interact with the surrounding medium. The high energy particles are believed to be accelerated by the diffusive shock acceleration and the strong magnetic field is generated by Weibel instability in the shock. When ultrarelativistic electrons with strong magnetic field cool by the synchrotron emission, the radiation is observed in gamma-ray burst and the near-equipartitioned magnetic field in the external shock delays the afterglow emission. In this paper, we performed the 3D particle-in-cell (PIC) simulations to understand the characteristics of these relativistic shock and particle acceleration. Forward and reverse shocks are shaped while the unmagnetized injecting jet interacts with the unmagnetized ambient medium. Both upstream and downstream become thermalized and the particle accelerations are shown in each transition region of the shock structures.

  • PDF

Search for broadband extended gravitational-wave emission bursts in LIGO S6 in 350-2000 Hz by GPU acceleration

  • van Putten, Maurice H.P.M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.37.3-37.3
    • /
    • 2017
  • We present a novel GPU accelerated search algorithm for broadband extended gravitational-wave emission (BEGE) with better than real-time analyis of H1-L1 LIGO S6 data. It performs matched filtering with over 8 million one-second duration chirps. Parseval's Theorem is used to predict the standard deviation ${\sigma}$ of filter output, taking advantage of near-Gaussian LIGO (H1,L1)-data in the high frequency range of 350-2000 Hz. A multiple of ${\sigma}$ serves as a threshold to filter output back to the central processing unit. This algorithm attains 80% efficiency, normalized to the Fast Fourier Transform (FFT). We apply it to a blind, all-sky search for BEGE in LIGO data, such as may be produced by long gamma-ray bursts and superluminous supernovae. We report on mysterious features, that are excluded by exact simultaneous occurrance. Our results are consistent with no events within a radius of about 20 Mpc.

  • PDF

Observation of early photons of Gamma-ray bursts from UFFO/Lomonosov

  • Jeong, Soomin;Park, I.H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.64.4-65
    • /
    • 2016
  • Observations of the early photons from evolution of optical afterglows or internal shock provides the crucial clues on the nature of the bursts and environments. Hundreds of GRBs afterglow observations in multi-wavelength region have been made mainly thanks to the fast (~ 60 seconds after the trigger) localisation GRB by Swift and its fast alert to the ground telescope. It helps to improve our understandings tremendously, however many enigmas still remain, such as burst mechanism, transition prompt emission to the afterglow, early optical flash, rise phase of the early optical light curve and some missing afterglows. They could be addressed by fast slewing and multi colour and IR follow-up by future telescopes. The primary aim of UFFO/Lomonosov is to follow up optical fast ever, within a couple of seconds after trigger by onboard X-ray telescope. Its optical FOV is $30{\times}30degrees$. As a key instrument, the Slewing Mirror to redirect the optical beam from GRBs rapidly to the Ritchey-Chretien telescope. The status and launch schedule of the UFFO/Lomonosov and its test performance will be reported and prospects for the next missions will be discussed.

  • PDF

GRB 100905A at the Epoch of Re-ionization

  • Im, Myung-Shin;Jeon, Yi-Seul;Jang, Min-Sung;Choi, Chang-Su;Kang, Eu-Gene;Jun, Hyun-Sung;Urata, Yuji;Huang, Kui-Yun;Kruehler, Thomas;Sakamoto, Taka;Gehrels, Neil;Choi, Philip I.;Larger Collaboration, Larger Collaboration
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.32.2-32.2
    • /
    • 2012
  • Gamma Ray Bursts (GRBs) are the most energetic events in the universe, and are known to arise from the death of massive stars in many cases. Their extreme brightness makes it possible to detect them at very high redshift (z > 6.5), well into the epoch of re-ionization, providing us with an opportunity to investigate the deaths of the first stars when the universe was much younger than 1 Gyr. Here, we report the discovery of GRB 100905A, a GRB at $z$ - 7.5 (age of the universe at 700 Myr). Our observation revealed a strong spectral break between z and J band, allowing us to estimate its photometric redshift. Its gamma-ray light curve shows a very short duration of about 0.7 sec, the shortest duration event at z > 5. Investigation of this and three other known GRBs at z > 6.5 reveals that they are all short duration bursts. This is puzzling, considering that GRBs from death of massive stars do not show short duration. We suggest two possible explanations for this: (i) the BAT light curves of the high redshift GRBs suffered from observational selection effect where we are only observing the very tip of the light curve; (ii) the stars in the early universe had a peculiar nature that are different from ordinary stars at lower redshifts.

  • PDF

POLARIZATION AND POLARIMETRY: A REVIEW

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.1
    • /
    • pp.15-39
    • /
    • 2014
  • Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and $X/{\gamma}$ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.