• Title/Summary/Keyword: gamma ray dose

Search Result 484, Processing Time 0.023 seconds

Comparison of Irradiation Effect of Different Radiation Types on Decontamination of Microorganisms in Red Pepper Powder (고춧가루 오염 미생물의 제어에서 방사선종별 조사 효과)

  • Park, Kyung-Sook
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • This study investigated the reduction of microbial population and sensory properties in red pepper powders irradiated by gamma ray, electron beam, and X-ray. Populations of total aerobic bacteria and yeast & molds in red pepper powders were decreased by irradiation treatment in a dose-dependent manner. Gamma ray, electron beam, and X-ray at doses above 8 kGy caused 100% inhibition on growth of aerobic bacteria in red pepper powders. Inhibitory activity of X-ray on sterilization of red pepper powders was significantly equal to or higher compared to gamma ray and electron beam. Color and off flavor in red pepper powders were no significant difference among the control and samples irradiated with gamma ray, electron beam, and X-ray. As a result, the gamma ray, electron beam, and X-ray irradiation can be used to sterilize the microbial growth in red pepper powders without quality loss.

Studies on the Cellular Metabolism in Microorganisms as Influenced by Gamma-irradiation.(II) - On the Respiration Rate and Dehydrogenase Actibity in Yeast Cells Irradiated by $\gamma$-ray. (미생물의 세포생리에 미치는 전이방사선의 영향에 관한 연구 (제 2보) - 효모균의 산소호흡기및 탈수소효소능에 대한 $\gamma$-ray 의 영향)

  • 김종협
    • Korean Journal of Microbiology
    • /
    • v.5 no.2
    • /
    • pp.69-78
    • /
    • 1967
  • Kim, Jong Hyup, (Div. of Biology, Atomic Energy Research Institute.) Studies on the Cellular Metabolism in Microorganisms as influenced by Gamma-irradiation(II). On respiration rate and dehydrogenase activity of yeast cells irradiated by gamma ray from cobalt-60. 1. Oxygen uptake rate of the gamma irraiated yeast cells had been measured with Warburg's manometer, and the $O_{2}$-uptake was compared with those of normal cells. The rate of endogetious respiration increases in its $O_2$-uptake at 150, 000 rentgen dose, and at higher rentoen doses it was decreased. Exogenous respiration begin to decrease in its O_2$-uptake at 5, 000r. doses of irradiation, further decrease with increasing of doses unproportionally. 2. It appears that plasma-membrane and nuclear membrane of yeast cells have changed and denatured by gamma-irradiation, as exogenous respiration of glucose had been decreased at a dose of 200, 000r's irradiation. 3. The activity of glucose, alcoholic, lactic, succinic and glutamic deliydrogenase (G.D.H., A.D.H., L.D.H., S.D.11., and GL.D.H.) in the gamma irradaited cells had been assayed by T.T.C.(Triphenyl tetrazolium chloride) method and spectrophotometry, the obtained results were compared with those of normal cells. 4. At a dose of and 10, 000 rentgens' irradiation of gamma ray, the activty of each debydrogenase (G.D.H., A.D.H., L.D.H., ) shows a sharp and highest peak in optical absorbalicy, but each abtivity of S.D.H and Gl.D.H shows its' maximum peak at a dose of 30, 000r. 5. The curve of each dehydrogenase activity was found to be rhythmical according to dose-rate of gamma irradiation. 6. Comparing with activity of debydrogenase each other, the maximum peak in optical absorbency can be arranged according to order as follows; glucose > alcoholoic > lactic > glutamic > succinic, this order is identical to the order of breakdown utility in respiration of normal yeast cells. 7. The activity of dehydrogenase experimented exhibit a resistance against gamma irradiation at lethal dose of cells, and the activity of dehydrogenase are found to be much resistant than those of respiratory system. We may assume that the membrane substrate of mitochondria or cytoplasm had been destructed by gamma-irradiation much more than that of dehydronase system.

  • PDF

Distribution and characteristics of radioactivity$(^{232}Th,\;^{226}Ra,\;^{40}K,\;^{137}Cs\;and\;^{90}Sr)$ and radiation in Korea

  • Yun, Ju-Yong;Choi, Seok-Won;Kim, Chang-Kyu;Moon, Jong-Yi;Rho, Byung-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.167-174
    • /
    • 2005
  • The concentrations of natural and artificial radionuclides in soil and gamma ray dose rate in air at 233 locations in Korea have been determined. The national mean concentrations of $^{232}Th,\;^{226}Ra,\;^{40}K,\;^{137}Cs\;and\;^{90}Sr$ in soil were $60{\pm}31,\;33{\pm}14,\;673{\pm}238,\;35{\pm}9.3\;and\;5.0{\pm}3.4\;Bq\;kg^{-1}$, respectively. The mean gamma-ray dose rate at 1 m above the ground was $7918\;nGy\;h^{-1}$. $^{137}Cs$ concentration had highly significant correlation with organic matter content and cation exchange capacity. $^{90}Sr$ concentration had slightly coherent with pH. The results have been compared with other global radioactivity and radiation measurements.

Determination of Seedling Sensitivity and Selection of Morphological Mutants by Treatments of Gamma-Ray and EMS in Rapeseed and Leaf Mustard (감마선 및 EMS처리에 의한 유채(Brassica napus L.)와 갓(Brassica juncea L.)의 유묘 감수성 평가 및 형태적 변이체 선발)

  • Kang, Eun-Seon;Kim, Jun-Su;Eun, Jong-Seon
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.111-121
    • /
    • 2014
  • This study was aimed to select useful mutants of rapeseed (Brassica napus L.) and leaf mustard (Brassica juncea L.), the seeds of three lines S-14, S-27, and S-28 were treated with gamma-ray and EMS. The optimum ranges of gamma-ray dose and EMS concentration to enlarge the characteristic morphological variations were also separately investigated. The survival rates of S-28 only linearly decreased with increasing the gamma-ray dose. The overall growth parameters decreased of gamma-ray dose in all three lines of S-14, S-27, and S-28. The reduction dosage 50 of gamma-ray was identified as 1,200 Gy for S-14 leaf mustard, while those of S-27 and S-28 rapeseed lines were appeared as same 1,000 Gy. The emergence rates of S-14 and S-27 showed no significant differences by EMS treatment, while the growth of all three lines were significantly decreased. The reduction concentration 50 in S-14 could not be determined, demonstrating that this leaf mustard line is presumably insensitive to mutagenic EMS, while those in S-27 and S-28 were identified as 3.0 and 2.5%, respectively, showing that these rapeseed lines possess higher sensitivity to EMS than S-14. Various morphological characteristics of $M_1$ generation obtained from mutagen treatment were elaborately investigated for further maintenance of $M_2$ generation. In $M_2$ generation variants showing short stem, yellow color in seed coat, chlorophyll deficiencies in leaf or pod, abnormal flower color were selected as potentially useful mutants for breeding.

A STUDY FOR DOSE DISTRIBUTION IN SPENT FUEL STORAGE POOL INDUCED BY NEUTRON AND GAMMA-RAY EMITTED IN SPENT FUELS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.174-182
    • /
    • 2011
  • With the reactor operation conditions - 4.3 wt% $^{235}U$ initial enrichment, burn-up 55,000 MWd/MTU, average power 34 MW/MTU for three periods burned time for 539.2 days per period and cooling time for 100 hours after shut down, to set up the condition to determine the minimum height (depth) of spent fuel storage pool to shut off the radiation out of the spent fuel storage pool and to store spent fuels safely, the dose rate on the specific position directed to the surface of spent fuel storage pool induced by the neutron and gamma-ray from spent fuels are evaluated. The length of spent fuel is 381 cm, and as the result of evaluation on each position from the top of spent fuel to the surface of spent fuel storage pool, it is difficult for neutrons from spent fuels to pass through the water layer of maximum 219 cm (600 cm from the floor of spent fuel storage pool) and 419 cm (800 cm from the floor of spent fuel storage pool) for gamma-ray. Therefore, neutron and gamma-ray from spent fuels can pass through below 419 cm (800 cm from the floor) water layer directed to the surface of spent fuel storage pool.

Effect of Gamma Irradiation on the Mechanical and Thermal Properties of Biodegradable Packaging Materials

  • Lim, DaeGyu;Kim, Youngsan;Kwon, Sangwoo;Jang, Hyunho;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.85-90
    • /
    • 2021
  • The gamma irradiation was on to Poly(butylene sebacate-co-terephthalate) (PBSeT), Poly(butylene adipate-co-terephthalate) (PBAT), Poly(lactic acid) (PLA) and casting polypropylene (CPP) at dose levels from 0 to 50 kGy. The properties of gamma irradiated samples were analyzed using DSC, TGA, UTM and FT-IR spectra. The mechanical and thermal properties of PBSeT and PBAT after gamma irradiation were less affected than CPP. The tensile strength and elongation of PBSeT was not affected by gamma irradiation, while these of PBAT, PLA and CPP were significantly decreased at 50 kGy gamma-ray dose. The thermal stability of PBSeT, PBAT, PLA and CPP showed a similar tendency to tensile strength. The glass transition temperature(Tg) and melting temperature(Tm) of PBSeT and PBAT were not altered by increasing gamma-ray dose, while these of PLA and CPP decreased. The chemical composition of all samples was not modified by gamma irradiation, and it was confirmed by FT-IR spectra. Based on mechanical and thermal stability studies of gamma irradiation on bioplastics, tested biodegradable packaging materials showed a potential to be used in sterilization process up to 35 kGy.

Decomposition of Hexahydro-1,3,5-trinitro-1,3,5-triazine by Gamma Ray Irradiation (감마선 조사에 의한 hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)의 분해)

  • Lee, Byungjin;Lee, Myunjoo;Kim, Yuri
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.731-741
    • /
    • 2004
  • The purpose of this study was to evaluate the potential of a gamma ray irradiation to decompose hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in an aqueous solution. The decomposition reaction of RDX by gamma ray irradiation was a first-order kinetic over the applied initial concentrations (10-40mg/L). The dose constant was strongly dependent on the initial concentration of the RDX. The removal of RDX was more efficient at pH below 3 and at pH above 11 than at neutral pH (pH 5-9). The required irradiation dose to remove 99% of the RDX (40mg/L) was 4, 8 and 1 kGy, at pH 2, 7 and 13, respectively. The dose constant was increased by two folds and over twelve folds at pH 2 and 13, respectively, when compared with that at pH 7. When an irradiation dose of 20 kGy was applied, the removal efficiencies of TOC were 80, 57 and 91% at pH 2, 7 and 13, respectively. Ammonia and nitrate were detected as the main nitrogen byproducts of RDX and formic acid was detected as an organic byproduct. The results showed that a gamma ray irradiation was an attractive method for the decomposition of RDX in an aqueous solution and it was found that a strong alkaline pH over 12 should be applied to the decomposition reaction of RDX.

Feasibility of clay-shielding material for low-energy photons (Gamma/X)

  • Tajudin, S.M.;Sabri, A.H.A.;Abdul Aziz, M.Z.;Olukotun, S.F.;Ojo, B.M.;Fasasi, M.K.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1633-1637
    • /
    • 2019
  • While considering the photon attenuation coefficient (${\mu}$) and its related parameters for photons shielding, it is necessary to account for its transmitted and reflected photons energy spectra and dose contribution. Monte Carlo simulation was used to study the efficiency of clay ($1.99g\;cm^{-3}$) as a shielding material below 150 keV photon. Am-241 gamma source and an X-ray of 150 kVp were calculated. The calculated value of ${\mu}$ for Am-241 is higher within 5.61% compared to theoretical value for a single-energy photon. The calculated half-value layer (HVL) is 0.9335 cm, which is lower than that of ordinary concrete for X-ray of 150 kVp. A thickness of 2 cm clay was adequate to attenuate 90% and 85% of the incident photons from Am-241 and X-ray of 150 kVp, respectively. The same thickness of 2 cm could shield the gamma source dose rate of Am-241 (1 MBq) down to $0.0528{\mu}Sv/hr$. For X-ray of 150 kVp, photons below 60 keV were significantly decreased with 2 cm clay and a dose rate reduction by ~80%. The contribution of reflected photons and dose from the clay is negligible for both sources.

Development of a Stereotactic Device for Gamma Knife Irradiation of Small Animals

  • Chung, Hyun-Tai;Chung, Young-Seob;Kim, Dong-Gyu;Paek, Sun-Ha;Cho, Keun-Tae
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.1
    • /
    • pp.26-30
    • /
    • 2008
  • Objective : The authors developed a stereotactic device for irradiation of small animals with Leksell Gamma Knife Model C. Development and verification procedures were described in this article. Methods : The device was designed to satisfy three requirements. The mechanical accuracy in positioning was to be managed within 0.5 mm. The strength of the device and structure were to be compromised to provide enough strength to hold a small animal during irradiation and to interfere the gamma ray beam as little as possible. The device was to be used in combination with the Leksell G-$frame^{(R)}$ and $KOPF^{(R)}$ rat adaptor. The irradiation point was determined by separate imaging sequences such as plain X-ray images. Results : The absolute dose rate with the device in a Leksell Gamma Knife was 3.7% less than the value calculated from Leksell Gamma $Plan^{(R)}$. The dose distributions measured with $GAFCHROMIC^{(R)}$ MD-55 film corresponded to those of Leksell Gamma $Plan^{(R)}$ within acceptable range. The device was used in a series of rat experiments with a 4 mm helmet of Leksell Gamma Knife. Conclusion : A stereotactic device for irradiation of small animals with Leksell Gamma Knife Model C has been developed so that it fulfilled above requirements. Absorbed dose and dose distribution at the center of a Gamma Knife helmet are in acceptable ranges. The device provides enough accuracy for stereotactic irradiation with acceptable practicality.

Surface Graft Polymerization of Poly(ethylene glycol) Methacrylate onto Kenaf Pulp using Gamma-ray Irradiation (감마선을 이용한 케나프 펄프 표면의 Poly(ethylene glycol) Methacrylate 그라프트 중합반응)

  • Oh, Doori;Jeun, Joon Pyo;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.251-255
    • /
    • 2012
  • Pulp is typically used for paper industry to manufacturing various types of papers. However simply chemical modification makes enable the pulp to a wide range of application in various industrial fields. To bring the polymerization the gamma ray irradiated on the mixture of kenaf and PEGMA in various dose ranges from 20 to 60 kGy. As a results, the graft degree of 20.0% was obtained from 475 g of gamma ray irradiated pulp and PEGMA. After the polymerization, the chemical structure and morphology of the surfaces were examined by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscope. Chemical structure of grafted pulp has significantly growth in carbonyl content with increasing the radiation dose. Also surface morphology was distinctly changed with decreased the degree of roughness and increasing the diameter. These results were explained gamma ray irradiation improve performance of graft polymerization efficiency.