• Title/Summary/Keyword: gamma knife radiosurgery

Search Result 128, Processing Time 0.023 seconds

Gamma Knife Radiosurgery for Brain Metastases from Breast Cancer

  • Jo, Kyung Il;Im, Young-Hyuck;Kong, Doo Sik;Seol, Ho Jun;Nam, Do-Hyun;Lee, Jung-Il
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.5
    • /
    • pp.399-404
    • /
    • 2013
  • Objective : The authors conducted a retrospective cohort study to determine prognostic factors and treatment outcomes of brain metastases (BM) from breast cancer (BC) after Gamma Knife radiosurgery (GKS). Methods : Pathologic and clinical features, and outcomes were analyzed in a cohort of 62 patients with BM from BC treated by GKS. The Kaplan- Meier method, the log-rank test, and Cox's proportional hazards model were used to assess prognostic factors. Results : Median survival after GKS was 73.0 weeks (95% confidence interval, 46.0-100.1). HER2+ [hazard ratio (HR) 0.441; p=0.045], Karnofsky performance scale (KPS) ${\geq}70$ (RR 0.416; p=0.050) and systemic chemotherapy after GKS (RR 0.282; p=0.001) were found to be a favorable prognostic factor of overall survival. Actuarial local control (LC) rate were $89.5{\pm}4.5%$ and $70.5{\pm}6.9%$ at 6 and 12 months after GKS, respectively. No prognostic factors were found to affect LC rate. Uni- and multivariate analysis revealed that the distant control (DC) rate was higher in patients with; a small number (${\leq}3$) of metastasis (HR 0.300; p=0.045), no known extracranial metastasis (p=0.013, log-rank test), or the HER2+ subtype (HR 0.267; p=0.027). Additional whole brain radiation therapy and metastasis volume were not found to be significantly associated with LC, DC, or overall survival. Conclusion : The treatment outcomes of patients with newly diagnosed BM from BC treated with GKS could be affected primarily by intrinsic subtype, KPS, and systemic chemotherapy. Therapeutic strategy and prognosis scoring system should be individualized based on considerations of intrinsic subtype in addition to traditionally known parameters related to stereotactic radiosurgery.

Evaluation of Tissue Inhomogeneity for Gamma-knife Radiosurgery Using Film Dosimetry (감마 나이프 방사선 수술시 필름 선량 측정에 의한 조직 불균일성에 대한 연구)

  • Cho, Heung-Lae;Shon, Seung-Chang;Shu, Hyun-Suk
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.325-335
    • /
    • 1998
  • Purpose : Since the mid cranial fossa is composed of various thickness of bone, the tissue inhomogeneity caused by bone would produce dose attenuation in cobalt-60 gamma knife irradiation. The correction factor for bone attenuation of cobalt-60 which is used for gamma knife source is -3.5$\%$. More importantly, nearly all the radiosurgery treatment planning systems assume a treatment volume of unit density: any perturbation due to tissue inhomogeneity is neglected, This study was performed to confirm the bone attenuation in mid cranial fossa using gamma knife. Materials and Methods : Computed tomography was performed after Leksell stereotactic frame had been liked to the Alderson Rando Phantom (human phantom) skull area. Kodak X-omat V film was inserted into two sites of pituitary adenoma point and acoustic neurinoma point, and irradiated by gamma knife with 14mm and 18mm collimator. An automatic scanning densitometer with a 1mm aperture is used to measure the dose profile along the x and y axis. Results : Isodose curve constriction in mid cranial fossa is observed with various ranges. Pituitary tumor point is greater than acoustic neurinoma point (0.2-3.0 mm vs 0.1-1.3 mm) and generally 14 mm collimator is greater than 18mm collimator (0.4-3.0 mm vs. 0.2-2.2 mm) Even though the isodose constriction is found, constriction of 50$\%$ isodose curve which is used for treatment reference line does not exceed 1 mm. This range is too small to influence the treatment planning and treatment results. Conclusion : Radiosurgery planning system of gamma knife does not show significant error to be corrected without consideration of bone attenuation.

  • PDF

Investigation of Leksell GammaPlan's ability for target localizations in Gamma Knife Subthalamotomy (감마나이프 시상하핵파괴술에서 목표물 위치측정을 위한 렉셀 감마플랜 능력의 조사)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.901-907
    • /
    • 2019
  • The aim of this study is to evaluate the ability of target localizations of Leksell GammaPlan(LGP) in Gamma Knife Subthalamotomy(or Pallidotomy, Thalamotomy) of functional diseases. To evaluate the accuracy of LGP's location settings, the difference Δr of the target coordinates calculated by LGP (or LSP) and author's algorithm was reviewed for 10 patients who underwent Deep Brain Stimulation(DBS) surgery. Δr ranged from 0.0244663 mm to 0.107961 mm. The average of Δr was 0.054398 mm. Transformation matrix between stereotactic space and brain atlas space was calculated using PseudoInverse or Singular Value Decomposition of Mathematica to determine the positional relationship between two coordinate systems. Despite the precise frame positioning, the misalignment of yaw from -3.44739 degree to 1.82243 degree, pitch from -4.57212 degree to 0.692063 degree, and rolls from -6.38239 degree to 7.21426 degree appeared. In conclusion, a simple in-house algorithm was used to test the accuracy for location settings of LGP(or LSP) in Gamma Knife platform and the possibility for Gamma Knife Subthalamotomy. The functional diseases can be treated with Gamma Knife Radiosurgery with safety and efficacy. In the future, the proposed algorithm for target localizations' QA will be a great contributor to movement disorders' treatment of several Gamma Knife Centers.

Differences in Target Volume Delineation Using Typical Radiosurgery Planning System (각각의 방사선수술 치료계획시스템에 따른 동일 병변의 체적 차이 비교)

  • Han, Su Chul;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.265-270
    • /
    • 2013
  • Correct target volume delineation is an important part of radiosurgery treatment planning process. We designed head phantom and performed target delineation to evaluate the volume differences due to radiosurgery treatment planning systems and image acquisition system, CT/MR. Delineated mean target volume from CT scan images was $2.23{\pm}0.08cm^3$ on BrainSCAN (NOVALS), $2.13{\pm}0.07cm^3$ on Leksell gamma plan (Gamma Knife) and $2.24{\pm}0.10cm^3$ on Multi plan (Cyber Knife). For MR images, $2.08{\pm}0.06cm^3$ on BrainSCAN, $1.94{\pm}0.05cm^3$ on Leksell gamma plan and $2.15{\pm}0.06cm^3$ on Multi plan. As a result, Differences of delineated mean target volume due to radiotherapy planning system was 3% to 6%. And overall mean target volume from CT scan images was 6.36% larger than those of MR scan images.

Systemic Expression of Vascular Endothelial Growth Factor in Patients with Cerebral Cavernous Malformation Treated by Stereotactic Radiosurgery

  • Park, Sang-Jin;Park, Seong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.442-448
    • /
    • 2016
  • Objective : Increased expression of angiogenic factors, such as vascular endothelial growth factor (VEGF), is associated with the pathogenesis of cerebral cavernous malformations (CCMs). The purpose of this study was to investigate plasma levels of VEGF in normal subjects and in patients with CCM and to evaluate change in these levels following stereotactic radiosurgery (SRS). Methods : Peripheral venous blood was collected from 6 patients with CCM before SRS using Gamma Knife and at the 1 week, 1 month, 3month, and 6 month follow-up visits. Plasma VEGF levels were measured using commercially available enzyme-linked immunosorbent assay kits. Peripheral blood samples were obtained from 10 healthy volunteers as controls. Results : Mean plasma VEGF level of 41.9 pg/mL (range, 11.7-114.9 pg/mL) in patients with CCM at baseline was higher than that of the healthy controls (29.3 pg/mL, range, 9.2-64.3 pg/mL), without significant differences between CCM patients and controls (p=0.828). Plasma VEGF level following SRS dropped to 24.6 pg/mL after 1 week, and decreased to 18.5 pg/mL after 1 month, then increased to 24.3 pg/mL after 3 months, and 32.6 pg/mL after 6 months. Two patients suffering from rebleeding after SRS showed a higher level of VEGF at 6 months after SRS than their pretreatment level. Conclusion : Plasma VEGF levels in patients with CCM were elevated over controls at baseline, and decreased from baseline to 1 month after SRS and increased further for up to 6 months. Theses results indicated that anti-angiogenic effect of SRS might play a role in the treatment of CCMs.

Radiosurgical Considerations in the Treatment of Large Cerebral Arteriovenous Malformations

  • Lee, Sung-Ho;Lim, Young-Jin;Choi, Seok-Keun;Kim, Tae-Sung;Rhee, Bong-Arm
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.378-384
    • /
    • 2009
  • Objective : In order to establish the role of Gamma Knife radiosurgery (GKS) in large intracranial arteriovenous malformations (AVMs), we analyzed clinical characteristics, radiological features, and radiosurgical outcomes. Methods : Between March 1992 and March 2005, 28 of 33 patients with large AVMs (> $10\;cm^3$ in nidus-volume) who were treated with GKS underwent single session radiosurgery (RS), and the other 5 patients underwent staged volumetric RS. Retrospectively collected data were available in 23 cases. We analyzed treatment outcomes in each subdivided groups and according to the AVM sizes. We compared the estimated volume, defined as primarily estimated nidus volume using MR images, with real target volume after excluding draining veins and feeding arteries embedded into the nidus. Results : Regarding those patients who underwent single session RS, 44.4% (8/18) had complete obliteration; regarding staged volumetric RS, the obliteration rate was 40% (2/5). The complete obliteration rate was 60% (6/10) in the smaller nidus group ($10-15\;cm^3$ size), and 25% (2/8) in the larger nidus group (over $15\;cm^3$ size). One case of cerebral edema and two cases (8.7%) of hemorrhage were seen during the latent period. The mean real target volume for 18 single sessions of RS was $17.1\;cm^3$ ($10.1-38.4\;cm^3$), in contrast with the mean estimated volume of $20.9\;cm^3$ ($12.0-45.0\;cm^3$). Conclusion : The radiosurgical treatment outcomes of large AVMs are generally poor. However, we presume that the recent development in planning software and imaging devices aid more accurate measurement of the nidus volume, therefore improving the treatment outcome.

Clinical Analysis of Inverse Planning for Radiosurgery ; Gamma Knife Treatment Plan Study (방사선 수술 역방향 치료계획 유용성 평가)

  • Jin, Seong Jin;Je, Jae Yong;Park, Cheol Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.343-348
    • /
    • 2015
  • The purpose of this study is a comparison of forward planning(FP) and inverse planning(IP) of a radiosurgery procedure. 10 patients of acoustic schwannoma MR image were used for treatment plan. FP-1,2 and IP were established under the same condition. FP and IP were compared by number of shot, conformity index(CI), paddic conformity index(PCI), gradiant index(GI) and treatment time. On average the treatment plan produced by IP tool provided an improved or similar CI, PCI, GI and reduced treatment time as compared to the FP (CI;FP-1:0.85, FP-2:0.86, IP:0.94, PCI;FP-1:0.79, FP-2:0.81, IP:0.78, GI;FP-1:2.94, FP-2:2.94, IP:3.01). The inverse planning system provides a clinically useful plan while reducing the planning time and treatment time.

Strategy of Multistage Gamma Knife Radiosurgery for Large Lesions (큰 병변에 대한 다단계 감마나이프 방사선수술의 전략)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.801-809
    • /
    • 2019
  • Existing Gamma Knife Radiosurgery(GKRS) for large lesions is often conducted in stages with volume or dose partitions. Often in case of volume division the target used to be divided into sub-volumes which are irradiated under the determined prescription dose in multi-sessions separated by a day or two, 3~6 months. For the entire course of treatment, treatment informations of the previous stages needs to be reflected to subsequent sessions on the newly mounted stereotactic frame through coordinate transformation between sessions. However, it is practically difficult to implement the previous dose distributions with existing Gamma Knife system except in the same stereotactic space. The treatment area is expanding because it is possible to perform the multistage treatment using the latest Gamma Knife Platform(GKP). The purpose of this study is to introduce the image-coregistration based on the stereotactic spaces and the strategy of multistage GKRS such as the determination of prescription dose at each stage using new GKP. Usually in image-coregistration either surgically-embedded fiducials or internal anatomical landmarks are used to determine the transformation relationship. Author compared the accuracy of coordinate transformation between multi-sessions using four or six anatomical landmarks as an example using internal anatomical landmarks. Transformation matrix between two stereotactic spaces was determined using PseudoInverse or Singular Value Decomposition to minimize the discrepancy between measured and calculated coordinates. To evaluate the transformation accuracy, the difference between measured and transformed coordinates, i.e., ${\Delta}r$, was calculated using 10 landmarks. Four or six points among 10 landmarks were used to determine the coordinate transformation, and the rest were used to evaluate the approaching method. Each of the values of ${\Delta}r$ in two approaching methods ranged from 0.6 mm to 2.4 mm, from 0.17 mm to 0.57 mm. In addition, a method of determining the prescription dose to give the same effect as the treatment of the total lesion once in case of lesion splitting was suggested. The strategy of multistage treatment in the same stereotactic space is to design the treatment for the whole lesion first, and the whole treatment design shots are divided into shots of each stage treatment to construct shots of each stage and determine the appropriate prescription dose at each stage. In conclusion, author confirmed the accuracy of prescribing dose determination as a multistage treatment strategy and found that using as many internal landmarks as possible than using small landmarks to determine coordinate transformation between multi-sessions yielded better results. In the future, the proposed multistage treatment strategy will be a great contributor to the frameless fractionated treatment of several Gamma Knife Centers.

Gamma Knife Surgery for the Pineal Region Tumors

  • Cho, Sung-Yun;Park, Chul-Kee;Chung, Hyun-Tai;Paek, Sun-Ha;Kim, Dong-Gyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.5
    • /
    • pp.342-345
    • /
    • 2006
  • Objective : Gamma Knife Surgery[GKS] for the management of pineal region tumors is challengeable strategy as direct access to this area is not easy. The experiences of pineal region tumor patients treated with GKS were analyzed to evaluate the effectiveness. Methods : Seven patients with tumors in the pineal region were treated with GKS between September 1998 and May 2005. The histological diagnosis were pineal parenchymal tumor [2 patients], low-grade astrocytoma [2 patients], immature teratoma [1 patient], and choriocarninoma [1 patient]. One patient was diagnosed as metastatic brain tumor based on histological diagnosis for primary site and brain imaging study. The median marginal dose was 15Gy [range; $11{\sim}20$] at the 50% isodose line. The median target volume was $2.5cm^3$ [range; $0.8{\sim}12.5$]. The median clinical follow up period was 29 months [range; $13{\sim}93$] and the median radiological follow up period was 18 months [range; $6{\sim}73$]. Results : Tumor volume measured in follow-up images showed reduction in six patients, disappearance in one. No adverse effect due to GKS was found during the follow-up period. The performance status was preserved in all patients except one who died due to progression of primary cancer in spite of controlled metastatic brain lesion. Conclusion : Gamma Knife Surgery can be applied to pineal region tumors irrespective of their histology whenever surgery is not indicated.

Gamma Knife Radiosurgery for Intracranial Meningioma (두개강내 수막종에 대한 감마나이프 방사선수술)

  • Shim, Kyu Won;Chang, Jong Hee;Choi, Jae Young;Chang, Jin Woo;Park, Yong Gou;Chung, Sang Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.11
    • /
    • pp.1263-1270
    • /
    • 2001
  • Objective : To analyze the radiosurgical results of intracranial meningiomas after Gamma Knife radiosurgery (GKS) and to assess the possible factors related to the outcome and complications in treating meningiomas. Patients and Methods : We retrospectively reviewed the clinical and radiological data in 179 patients(194 lesions) treated with GKS for intracranial meningiomas between May 1992 and October 2000. Radiosurgical responses were categorized as shrinkage, stasis and enlargement, and we defined the shrunken and static group as a radio-logical control. A Cox proportional hazards model was used to evaluate the correlation between the radiosurgical outcomes and various factors such as location and size of tumor, age and gender of patients, relation to venous sinus, pre-GKS degree of edema, treatment modality, radiosurgical parameters, and pathologic findings. Results : Patients were grouped into skull base meningiomas(57.7%), non-skull base tumor including convexity, parasagittal, and falx meningiomas(37.1%), and others(5.2%) according to the location of tumors. The mean maximum dose and the margin dose of tumor was 30.0Gy(19-45Gy) and 15.1Gy(9.5-24.5Gy), respectively. The mean volume of the tumors was 9.4cc(0.003-45.0cc). The radiologic control rate was 97.1%. The radiation induced imaging change with or without neurologic deficit was the most common complication(23.6%). There were seen mostly in convexity, parasagittal, and falx meningiomas which were deeply embedded in cortex. Conclusion : GKS for intracranial meningioma seems to be safe and effective treatments. However, GKS should be considered very cautiously in non-skull base tumor such as convexity, parasagittal, or falx meningiomas with regards to patient's age and general condition, size and location of tumor, pattern of embedding into cortex, presenting symptoms and patient's preference.

  • PDF