• Title/Summary/Keyword: gamma emission

Search Result 325, Processing Time 0.019 seconds

A Study for Analysis of Image Quality Based on the CZT and NaI Detector according to Physical Change in Monte Carlo Simulation (CZT와 NaI 검출기 물질 기반 물리적 변화에 따른 영상의 질 분석에 관한 연구: 몬테카를로 시뮬레이션)

  • Ko, Hye-Rim;Yoo, Yu-Ri;Park, Chan-Rok
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.741-748
    • /
    • 2021
  • In this study, we evaluated image quality by changing collimator length and detector thickness using the Geant4 Application for Tomographic Emission (GATE) simulation tool. The gamma camera based on the Cadimium Zinc Telluride (CZT) and NaI detectors is modeled. In addition the images were acquired by setting 1, 2, 3, 4, 5, and 6 cm collimator length and 1, 3, 5, and 7 mm detector thickness using point source and phantom, which is designed by each diameter (4.45, 3.80, 3.15, 2.55 mm) with 447, 382, 317, and 256 Bq. The sensitivity (cps/MBq) for point source, and signal to noise ratio (SNR) and profile for phantom at the 4.45 mm by drwan the region of interests were used for quantitative analysis. Based on the results, the sensitivity according to collimator length is 2.3 ~ 48.6 cps/MBq for CZT detector, and 1.8 ~ 43.9 cps/MBq for NaI detector. The SNR using phantom is 3.6~9.8 for CZT detector, and 2.9~9.5 for NaI detector. As the collimator length is increased, the image resolution is also improved according to profile results based on the CZT and NaI detector. In addition, the senistivity for detector thickness is 0.04 ~ 0.12 cps/MBq for CZT detector, and 0.03 ~ 0.11 cps/MBq. The SNR using phnatom is 7.3~9.8 count for CZT detector, and 5.9~9.5 for NaI detector. As the detector thickness is increased, the image resolution is decreased according to profile results based on the CZT and NaI detector due to scatter ray. In conclusion, we need to set the geometric material such as detector and collimator to acuquire suitable image quality in nuclear medicine.

Evaluation of the influence of a visual design of an examination guide on patient comprehension and testing accuracy (검사 안내문의 시각적 디자인화가 환자의 검사 이해도 및 정확성에 미치는 영향 평가)

  • Kang, Young-Eun;Jung, Woo-Young;Hong, Bo-Ruem
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2019
  • Purpose An examination guide is a useful medium to provide the patient with an overview, pre- and post-test preparation, and precautions of nuclear testing. The design and arrangement of existing written texts and announcements were evaluated to elucidate the comprehension of patients undergoing testing. Materials and Methods Informational material describing bone scanning and $^{201}thallium$ myocardium perfusion single-photon emission computed tomography (SPECT), as a secondary examination, which accounts for the largest portion of gamma imaging at Asan Hospital (Seoul, South Korea), was selected as an improvement target in consultation with a national innovation center. Existing informational material was dispensed to patients scheduled for bone scans from November 2016 to February 2017 and the revised material was issued from March 2017 to May 2017. A survey was conducted of 200 patients who underwent $^{201}thallium$ myocardium perfusion SPECT before and after the revisions (n = 100 each time period) to assess the patients' understanding of the informational material. Results When comparing the use of the conventional vs. revised material, the number of patients who received treatment before bone scanning had decreased from 130 to 60, while the number of those who required additional imaging decreased from 53 to 14. Prior to the revision, 43% of patients underwent testing before preparation and 18% underwent additional testing. The decreased need for additional image acquisition after revision of the informational material resulted in a decrease in acquisition time of about 2 min, from 16.5 to 14.2 min. In the case of $^{201}thallium$ myocardium perfusion SPECT, patient comprehension of all five items surveyed had increased, while the number of patients who had repeatedly asked about various facets of the procedure pre- and post-testing had decreased from 36% to 16% and 31% to 14%, respectively. Conclusion Lower patient comprehension is accompanied by a decrease in image quality due to non-compliance during pre-testing and may lead to repetitive questions from the patient, which may also negatively affect the fatigue and work efficiency of the examiner. Improved readability and visibility of informational material through visualization was correlated with greater patient comprehension as well as improved image quality and acquisition time.

A study on γ-Al2O3 Catalyst for N2O Decomposition (N2O 분해를 위한 γ-Al2O3 촉매에 관한 연구)

  • Eun-Han Lee;Tae-Woo Kim;Segi Byun;Doo-Won Seo;Hyo-Jung Hwang;Jueun Baek;Eui-Soon Jeong;Hansung Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Direct catalytic decomposition is a promising method for controlling the emission of nitrous oxide (N2O) from the semiconductor and display industries. In this study, a γ-Al2O3 catalyst was developed to reduce N2O emissions by a catalytic decomposition reaction. The γ-Al2O3 catalyst was prepared by an extrusion method using boehmite powder, and a N2O decomposition test was performed using a catalyst reactor that was approximately 25.4 mm (1 in) in diameter packed with approximately 5 mm of catalysts. The N2O decomposition tests were carried out with approximately 1% N2O at 550 to 750 ℃, an ambient pressure, and a GHSV=1800-2000 h-1. To confirm the N2O decomposition properties and the effect of O2 and steam on the N2O decomposition, nitrogen, air, and air and steam were used as atmospheric gases. The catalytic decomposition tests showed that the 1% N2O had almost completely disappeared at 700 ℃ in an N2 atmosphere. However, air and steam decreased the conversion rate drastically. The long term stability test carried out under an N2 atmosphere at 700 ℃ for 350 h showed that the N2O conversion rate remained very stable, confirming no catalytic activity changes. From the results of the N2O decomposition tests and long-term stability test, it is expected that the prepared γ-Al2O3 catalyst can be used to reduce N2O emissions from several industries including the semiconductor, display, and nitric acid manufacturing industry.

Consideration on Shielding Effect Based on Apron Wearing During Low-dose I-131 Administration (저용량 I-131 투여시 Apron 착용여부에 따른 차폐효과에 대한 고찰)

  • Kim, Ilsu;Kim, Hosin;Ryu, Hyeonggi;Kang, Yeongjik;Park, Suyoung;Kim, Seungchan;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2016
  • Purpose In nuclear medicine examination, $^{131}I$ is widely used in nuclear medicine examination such as diagnosis, treatment, and others of thyroid cancer and other diseases. $^{131}I$ conducts examination and treatment through emission of ${\gamma}$ ray and ${\beta}^-$ ray. Since $^{131}I$ (364 keV) contains more energy compared to $^{99m}Tc$ (140 keV) although it displays high integrated rate and enables quick discharge through kidney, the objective of this study lies in comparing the difference in exposure dose of $^{131}I$ before and after wearing apron when handling $^{131}I$ with focus on 3 elements of external exposure protection that are distance, time, and shield in order to reduce the exposure to technicians in comparison with $^{99m}Tc$ during the handling and administration process. When wearing apron (in general, Pb 0.5 mm), $^{99m}Tc$ presents shield of over 90% but shielding effect of $^{131}I$ is relatively low as it is of high energy and there may be even more exposure due to influence of scattered ray (secondary) and bremsstrahlung in case of high dose. However, there is no special report or guideline for low dose (74 MBq) high energy thus quantitative analysis on exposure dose of technicians will be conducted based on apron wearing during the handling of $^{131}I$. Materials and Methods With patients who visited Department of Nuclear Medicine of our hospital for low dose $^{131}I$ administration for thyroid cancer and diagnosis for 7 months from Jun 2014 to Dec 2014 as its subject, total 6 pieces of TLD was attached to interior and exterior of apron placed on thyroid, chest, and testicle from preparation to administration. Then, radiation exposure dose from $^{131}I$ examination to administration was measured. Total procedure time was set as within 5 min per person including 3 min of explanation, 1 min of distribution, and 1 min of administration. In regards to TLD location selection, chest at which exposure dose is generally measured and thyroid and testicle with high sensitivity were selected. For preparation, 74 MBq of $^{131}I$ shall be distributed with the use of $2m{\ell}$ syringe and then it shall be distributed after making it into dose of $2m{\ell}$ though dilution with normal saline. When distributing $^{131}I$ and administering it to the patient, $100m{\ell}$ of water shall be put into a cup, distributed $^{131}I$ shall be diluted, and then oral administration to patients shall be conducted with the distance of 1m from the patient. The process of withdrawing $2m{\ell}$ syringe and cup used for oral administration was conducted while wearing apron and TLD. Apron and TLD were stored at storage room without influence of radiation exposure and the exposure dose was measured with request to Seoul Radiology Services. Results With the result of monthly accumulated exposure dose of TLD worn inside and outside of apron placed on thyroid, chest, and testicle during low dose $^{131}I$ examination during the research period divided by number of people, statistics processing was conducted with Wilcoxon Signed Rank Test using SPSS Version. 12.0K. As a result, it was revealed that there was no significant difference since all of thyroid (p = 0.345), chest (p = 0.686), and testicle (p = 0.715) were presented to be p > 0.05. Also, when converting the change in total exposure dose during research period into percentage, it was revealed to be -23.5%, -8.3%, and 19.0% for thyroid, chest, and testicle respectively. Conclusion As a result of conducting Wilcoxon Signed Rank Test, it was revealed that there is no statistically significant difference (p > 0.05). Also, in case of calculating shielding rate with accumulate exposure dose during 7 months, it was revealed that there is irregular change in exposure dose for inside and outside of apron. Although the degree of change seems to be high when it is expressed in percentage, it cannot be considered a big change since the unit of accumulated exposure dose is in decimal points. Therefore, regardless of wearing apron during high energy low dose $^{131}I$ administration, placing certain distance and terminating the administration as soon as possible would be of great assistance in reducing the exposure dose. Although this study restricted $^{131}I$ administration time to be within 5 min per person and distance for oral administration to be 1m, there was a shortcoming to acquire accurate result as there was insufficient number of N for statistics and it could be processed only through non-parametric method. Also, exposure dose per person during lose dose $^{131}I$ administration was measured with accumulated exposure dose using TLD rather than through direct-reading exposure dose thus more accurate result could be acquired when measurement is conducted using electronic dosimeter and pocket dosimeter.

  • PDF

Utility of Wide Beam Reconstruction in Whole Body Bone Scan (전신 뼈 검사에서 Wide Beam Reconstruction 기법의 유용성)

  • Kim, Jung-Yul;Kang, Chung-Koo;Park, Min-Soo;Park, Hoon-Hee;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • Purpose: The Wide Beam Reconstruction (WBR) algorithms that UltraSPECT, Ltd. (U.S) has provides solutions which improved image resolution by eliminating the effect of the line spread function by collimator and suppression of the noise. It controls the resolution and noise level automatically and yields unsurpassed image quality. The aim of this study is WBR of whole body bone scan in usefulness of clinical application. Materials and Methods: The standard line source and single photon emission computed tomography (SPECT) reconstructed spatial resolution measurements were performed on an INFINA (GE, Milwaukee, WI) gamma camera, equipped with low energy high resolution (LEHR) collimators. The total counts of line source measurements with 200 kcps and 300 kcps. The SPECT phantoms analyzed spatial resolution by the changing matrix size. Also a clinical evaluation study was performed with forty three patients, referred for bone scans. First group altered scan speed with 20 and 30 cm/min and dosage of 740 MBq (20 mCi) of $^{99m}Tc$-HDP administered but second group altered dosage of $^{99m}Tc$-HDP with 740 and 1,110 MBq (20 mCi and 30 mCi) in same scan speed. The acquired data was reconstructed using the typical clinical protocol in use and the WBR protocol. The patient's information was removed and a blind reading was done on each reconstruction method. For each reading, a questionnaire was completed in which the reader was asked to evaluate, on a scale of 1-5 point. Results: The result of planar WBR data improved resolution more than 10%. The Full-Width at Half-Maximum (FWHM) of WBR data improved about 16% (Standard: 8.45, WBR: 7.09). SPECT WBR data improved resolution more than about 50% and evaluate FWHM of WBR data (Standard: 3.52, WBR: 1.65). A clinical evaluation study, there was no statistically significant difference between the two method, which includes improvement of the bone to soft tissue ratio and the image resolution (first group p=0.07, second group p=0.458). Conclusion: The WBR method allows to shorten the acquisition time of bone scans while simultaneously providing improved image quality and to reduce the dosage of radiopharmaceuticals reducing radiation dose. Therefore, the WBR method can be applied to a wide range of clinical applications to provide clinical values as well as image quality.

  • PDF