In high radiation fields, gamma cameras suffer from pulse pile-up, resulting in poor energy resolution, count losses, and image distortion. To overcome this problem, various methods have been introduced to reduce the size of the aperture or pixel, reject the pile-up events, and correct the pile-up events, but these technologies have limitations in terms of mechanical design and real-time processing. The purpose of this study is to develop a real-time gamma camera to evaluate the radioactive contamination in high radiation fields. The gamma camera is composed of a pinhole collimator, NaI(Tl) scintillator, position sensitive photomultiplier (PSPMT), signal processing board, and data acquisition (DAQ). The pulse pile-up is corrected in real-time with a field programmable gate array (FPGA) using the start time correction (STC) method. The STC method corrects the amplitude of the pile-up event by correcting the time at the start point of the pile-up event. The performance of the gamma camera was evaluated using a high dose rate 137Cs source. For pulse pile-up ratios (PPRs) of 0.45 and 0.30, the energy resolution improved by 61.5 and 20.3%, respectively. In addition, the image artifacts in the 137Cs radioisotope image due to pile-up were reduced.
Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Kim, Chan Hyeong;Lee, Han Rim;Jeong, Jong Hwi;Lee, Se Byeong;Shin, Dong Ho
Nuclear Engineering and Technology
/
제51권5호
/
pp.1406-1416
/
2019
In this research, a multi-slit prompt-gamma camera was developed to locate the distal dose falloff of the proton beam spots in spot scanning proton therapy. To see the performance of the developed camera, therapeutic proton beams were delivered to a solid plate phantom and then the prompt gammas from the phantom were measured using the camera. Our results show that the camera locates the 90% distal dose falloff (= d90%), within about 2-3 mm of error for the spots which are composed $3.8{\times}10^8$ protons or more. The measured location of d90% is not very sensitive to the irradiation depth of the proton beam (i.e., the depth of proton beam from the phantom surface toward which the camera is located). Considering the number of protons per spot for the most distal spots in typical treatment cases (i.e., 2 Gy dose divided in 2 fields), the camera can locate d90% only for a fraction of the spots depending on the treatment cases. However, the information of those spots is still valuable in that, in the multi-slit prompt-gamma camera, the distal dose falloff of the spots is located solely based on prompt gamma measurement, i.e., not referring to Monte Carlo simulation.
A new gamma camera using a-Si : H photodetectors has been designed for the imaging of heart and other small organs. In this new design the photomultiplier tubes and the position sensing circuitry are replaced by 2-D array of a-Si : H p-i-n pixel photode tectors and readout circuitry which are built on a substrate. Without the photomultiplier tubes this camera is light weight, hence can be made portable. To predict the characteristics and the performance of this new gamma camera we did Monte Carlo simulations. In the simulations 128${\times}$128 imaging array of various pixel sixes were used. $\^$99m/Tc(140keV)and $\^$201/Tl(70keV) were used as radiation sources. From the simulations we could obtain the resolution of the camera and ther overall system, and the blurring effects due to scattering in the phantom. Using the Wiener filter for image processing, restoration of the blurred image could be achieved. Simulation results of a-Si : H based gamma camera were compared with those of a conwentional gamma camera.
The purpose of this study is to perform radiation monitoring by acquiring gamma images and real-time optical images for 99mTc vial source using charge couple device (CCD) cameras equipped with the proposed compact gamma camera. The compact gamma camera measures 86×65×78.5 mm3 and weighs 934 g. It is equipped with a metal 3D printed diverging collimator manufactured in a 45 field of view (FOV) to detect the location of the source. The circuit's system uses system-on-chip (SoC) and field-programmable-gate-array (FPGA) to establish a good connection between hardware and software. In detection modules, the photodetector (multi-pixel photon counters) is tiled at 8×8 to expand the activation area and improve sensitivity. The gadolinium aluminium gallium garnet (GAGG) measuring 0.5×0.5×3.5 mm3 was arranged in 38×38 arrays. Intrinsic and extrinsic performance tests such as energy spectrum, uniformity, and system sensitivity for other radioisotopes, and sensitivity evaluation at edges within FOV were conducted. The compact gamma camera can be mounted on unmanned equipment such as drones and robots that require miniaturization and light weight, so a wide range of applications in various fields are possible.
방사선원과 감마카메라 사이에 위치한 산란매질의 종류, 두께 그리고 조준기 종류가 감마카메라 영상에 미치는 영향을 고찰하기 위하여 실험과 시뮬레이션을 수행하였다. 감마카메라는 조준기, NaI(T1) 섬광결정(60$\times$60$\times$6 ㎣), 위치민감형 광전자증배관(PSPMT), NIMs, 제어용 컴퓨터를 사용하여 개발하였다. 시뮬레이션은 산란매질(아크릴매질/공기)의 두께 변화(0~8 cm)와 조준기의 종류(평행구멍형조준기/확산형조준기) 변화에 따라 계산하였으며 실험 역시 시뮬레이션과 같은 조건으로 수행하였다. 시뮬레이션 결과를 보면, 매질의 두께가 0 cmn에서 8 cm로 증가하면, 계수율은 평행구멍형조준기의 경우 17%(공기), 60%(아크릴) 감소하였으며 확산형 조준기의 경우 감소율이 더 심하여 각각 86%(공기), 98%(아크릴)의 계수율 감소를 보였다. 실제 실험 결과도 시뮬레이션 결과와 비슷하게 매질의 두께가 0 cm에서 8 cm로 증가하면 평행구멍형조준기의 경우 계수율은 10%(공기), 54%(아크릴) 감소하였으며 확산형조준기의 경우 36%(공기), 63%(아크릴)의 계수율 감소를 보였다. 영상의 공간분해능 역시 매질의 두께가 증가할수록 저하되었다. 연구결과 소형 감마카메라를 임상적으로 사용하고자 할 때 감마카메라를 질환 부위에 최대한 밀착시키고 산란매질 두께를 최소화해야 고효율, 고분해능 영상을 얻을 수 있음을 확인하였다.
핀홀 감마카메라의 민감도를 향상시키기 위하여 픽셀화된 CsI(Tl) 섬광체와 위치민감형 광증배관을 이용하여 부호화 구경 감마카메라를 개발하였다. Rounded-hole로 이루어진 $13{\times}11$ 픽셀구조의 개조된 uniformly reductant array (URA) 가 계측기의 공간해상도를 고려하여 부호화된 마스크로 선택되었다. 부호화된 구경 카메라와 핀홀 카메라의 성능을 비교하기 위하여 Tc-99m 소스의 여러 가지 형태를 이용하여 테스트 하였으며, 신호 대 잡음비 또는 민감도의 향상에 대한 카메라의 성능을 분석하였다. 그 결과 공간해 상도에 있어서 약간의 저하가 있었으나 영상의 질은 매우 향상되었다. 비록 카메라의 개발과 테스트가 저에너지 영역에서 이루어졌지만, 부호화 구경 카메라의 구상은 방사성 물질 감시 그리고 다른 응용들에 있어서도 효과적으로 사용되어질 수 있을 것이다.
The prompt gamma imaging (PGI) technique is considered as one of the most promising approaches to estimate the range of proton beam in the patient and unlock the full potential of proton therapy. In the PGI technique, a dedicated algorithm is required to estimate the range of the proton beam from the prompt gamma (PG) distribution acquired by a PGI system. In the present study, a new range estimation algorithm was developed for a multi-slit prompt-gamma camera, one of PGI systems, to estimate the range of proton beam with high accuracy. The performance of the developed algorithm was evaluated by Monte Carlo simulations for various beam/phantom combinations. Our results generally show that the developed algorithm is very robust, showing very high accuracy and precision for all the cases considered in the present study. The range estimation accuracy of the developed algorithm was 0.5-1.7 mm, which is approximately 1% of beam range, for 1×109 protons. Even for the typical number of protons for a spot (1×108), the range estimation accuracy of the developed algorithm was 2.1-4.6 mm and smaller than the range uncertainties and typical safety margin, while that of the existing algorithm was 2.5-9.6 mm.
We investigated the effects of scintillation crystal surface treatment on gamma camera imaging. The NaI(Tl) and CsI(Tl) (20 mm (dia.) $\times10mm$ (thick) plate) scintillators were chosen for this study. Two different surface treatments, white and black reflectors, were applied to NaI(Tl) and CsI(Tl). The optical properties of generated scintillation light were evaluated using Monte Carlo simulation and postion sensitive photo multiplier tube (PSPMT). We measured sensitivity, energy resolution and spatial resolution of a gamma camera system with the scintillators coupled to a PSPMT. Based on the results, we concluded that the careful consideration of surface treatments of the scintillator was necessary in order to develop the gamma camera having good sensitivity and spatial resolution.
Mattias Simons;David De Schepper;Eric Demeester;Wouter Schroeyers
Nuclear Engineering and Technology
/
제56권8호
/
pp.3188-3198
/
2024
Efficient and secure decommissioning of nuclear facilities demands advanced technologies. In this context, gamma-ray detection and imaging are crucial in identifying radioactive hotspots and monitoring radiation levels. Our study is dedicated to developing a gamma-ray detection system tailored for integration into robotic platforms for nuclear decommissioning, offering a safe and automated solution for this intricate task and ensuring the safety of human operators by mitigating radiation exposure and streamlining hotspot localization. Our approach integrates a Compton camera based 3D reconstruction algorithm with a single Timepix3 detector. This eliminates the need for a second detector and significantly reduces system weight and cost. Additionally, combining a 3D camera with the setup enhances hotspot visualization and interpretation, rendering it an ideal solution for practical nuclear decommissioning applications. In a proof-of-concept measurement utilizing a 137Cs source, our system accurately localized and visualized the source in 3D with an angular error of 1° and estimated the activity with a 3% relative error. This promising result underscores the system's potential for deployment in real-world decommissioning settings. Future endeavors will expand the technology's applications in authentic decommissioning scenarios and optimize its integration with robotic platforms. The outcomes of our study contribute to heightened safety and accuracy for nuclear decommissioning works through the advancement of cost-effective and efficient gamma-ray detection systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.