• Title/Summary/Keyword: galvanostatic charge discharge

Search Result 73, Processing Time 0.024 seconds

Development of Silicon Coated by Carbon with PVDF Precursor and Its Anode Characteristics for Lithium Batteries (PVDF 전구체를 이용한 탄소 도포 실리콘 재료의 개발 및 리튬이차전지 음극특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Yun, Mun-Soo;Choi, Im-Goo;Park, Cheol-Wan;Lee, Kyeong-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.636-643
    • /
    • 2006
  • Si-C materials were synthesized by the heating the mixture of silicon and polyvinylidene fluoride (PVDF). The electrochemical properties of the Si-C materials as the high capacitive anode materials of lithium secondary batteries were evaluated by the galvanostatic charge-discharge test through 2032 type $Si-C{\mid}Li$ coin cells. Charge-discharge tests were performed at C/10 hour rate(C = 372 mAh/g). Initial discharge and charge capacities of $Si-C{\mid}Li$ cell using a Si-C material derived from PVDF(20wt.%) were found to be 1,830 and 526 mAh/g respectively. The initial discharge-charge characteristics of the developed Si-C electrode were analyzed by the electrochemical galvanostatic test adopting the capacity limited charge cut-off condition(GISOC). The range of reversible specific capacity IIE(intercalation efficiency at initial discharge-charge) and IICs(surface irreversible specific capacity) were 216 mAh/g, 68 % and 31 mAh/g, respectively.

Solid state electrochemical double layer capacitors with natural graphite and activated charcoal composite electrodes

  • Hansika, P.A.D.;Perera, K.S.;Vidanapathirana, K.P.;Zainudeen, U.L.
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.37-46
    • /
    • 2019
  • Electrochemical double layer capacitors (EDLCs) which are fabricated using carbon based electrodes have been emerging at an alarming rate to fulfill the energy demand in the present day world. Activated charcoal has been accepted as a very suitable candidate for electrodes but its cost is higher than natural graphite. Present study is about fabrication of EDLCs using composite electrodes with activated charcoal and Sri Lankan natural graphite as well as a gel polymer electrolyte which is identified as a suitable substitute for liquid electrolytes. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Galvanostatic Charge Discharge test were done to evaluate the performance of the fabricated EDLCs. Amount of activated charcoal and natural graphite plays a noticeable role on the capacity. 50 graphite : 40 AC : 10 PVdF showed the optimum single electrode specific capacity value of 15 F/g. Capacity is determined by the cycling rate as well as the potential window within which cycling is being done. Continuous cycling resulted an average single electrode specific capacity variation of 48 F/g - 16 F/g. Capacity fading was higher at the beginning. Later, it dropped noticeably. Initial discharge capacity drop under Galvanostatic Charge Discharge test was slightly fast but reached near stable upon continuous charge discharge process. It can be concluded that initially some agitation is required to reach the maturity. However, the results can be considered as encouraging to initiate studies on EDLCs using Sri Lankan natural graphite.

Preparation and Electrochemical Properties of Carbon Cryogel for Supercapacitor

  • Song, Min-Seob;Nahm, Sahn;Oh, Young-Jei
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.662-666
    • /
    • 2008
  • Electrochemical properties of carbon cryogel electrode for the application of composite electrode materials mixed with metal oxide in supercapacitor have been studied. Carbon cryogels were synthesized by sol-gel polycondensation of resorcinol with form aldehyde, followed by a freeze drying, and then pyrolysis in an inert atmosphere. Physical properties of carbon cryogel were characterized by BET, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that carbon cryogel is amorphous material. The electrochemical properties of carbon cryogel were measured by cyclic voltammetry as a function of concentration of liquid electrolyte, galvanostatic charge-discharge with different scan rates and electrochemical impedance measurements. The result of cyclic voltammetry indicated that the specific capacitance value of a carbon cryogel electrode was approximately 150.2 F/g (at 5 mV/s in 6M KOH electrolyte).

A Study on the Electrochemical Properties of Carbon Nanotube Anodes Using a Gradual Increasing State of Charge Method

  • Doh, Chil-Hoon;Park, Cheol-Wan;Jin, Bong-Soo;Moon, Seong-In;Yun, Mun-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.21-25
    • /
    • 2004
  • From the gradual increasing state of charge (GISOC) observations, electrochemical behavior of multi-walled carbon nanotube│(lM LiP $F_{6}$ , EC,DEC,DME 3:5:5 volume ratio)│lithium cells was evaluated using the galvanostatic charge-discharge process. A MWCNT delivers a specific charge capacity of 1,300 mAh/g in a Li cell when cycled up to an end voltage of 0 V (vs. Li/L $i^{+}$ )at a constant current rate every 10 hours. However, in the present study, the specific discharge capacity obtained is 338 mAh/g, thus amounting to a coulombic efficiency of only 26%. Further, when the MWCNT│Li cells were tested using the GISOC method, two distinguishable linear-fit ranges were observed due to the intercalation/deintercalation of lithium, which were found to have II $E_1$, IIC $s_1$ and II $E_2$of 27.3%, 372 mAh/g, and 25.5%, respectively. Q $c_1$, could be calculated from the data of IIE and IICs of each range by the modified equation "II $C_{sum}$= $\Sigma$( $Q_{C}$- $Q_{D}$)=(II $E_{1}$$^{-1}$ ) $Q_{Dl}$ +(II $E_2$$^{-1}$ -1) ( $Q_{D2}$- $Q_{Dl}$ ) + IIC $s_1$= $Q_{Cl}$ - $Q_{Dl}$ ". Results of the GISOC method could be converted to the results of galvanostatic charge-discharge process, irrespective of the state of charge of the cell or battery.ery.y.y.

Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors (유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향)

  • Yang, Inchan;Lee, Gihoon;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.696-703
    • /
    • 2016
  • In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.

Electrochemical double layer capacitors with PEO and Sri Lankan natural graphite

  • Jayamaha, Bandara;Dissanayake, Malavi A.K.L.;Vignarooban, Kandasamy;Vidanapathirana, Kamal P.;Perera, Kumudu S.
    • Advances in Energy Research
    • /
    • v.5 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • Electrochemical double layer capacitors (EDLCs) have received a tremendous interest due to their suitability for diverse applications. They have been fabricated using different carbon based electrodes including activated carbons, single walled/multi walled carbon nano tubes. But, graphite which is one of the natural resources in Sri Lanka has not been given a considerable attention towards using for EDLCs though it is a famous carbon material. On the other hand, EDLCs are well reported with various liquid electrolytes which are associated with numerous drawbacks. Gel polymer electrolytes (GPE) are well known alternative for liquid electrolytes. In this paper, it is reported about an EDLC fabricated with a nano composite polyethylene oxide based GPE and two Sri Lankan graphite based electrodes. The composition of the GPE was [{(10PEO: $NaClO_4$) molar ratio}: 75wt.% PC] : 5 wt.% $TiO_2$. GPE was prepared using the solvent casting method. Two graphite electrodes were prepared by mixing 85% graphite and 15% polyvinylidenefluoride (PVdF) in acetone and casting n fluorine doped tin oxide glass plates. GPE film was sandwiched in between the two graphite electrodes. A non faradaic charge discharge mechanism was observed from the Cyclic Voltammetry study. GPE was stable in the potential windows from (-0.8 V-0.8 V) to (-1.5 V-1.5 V). By increasing the width of the potential window, single electrode specific capacity increased. Impedance plots confirmed the capacitive behavior at low frequency region. Galvanostatic charge discharge test yielded an average discharge capacity of $0.60Fg^{-1}$.

Hierarchically Structured, Functionalized Graphenes for a Highly Reversible Capacitive Charge Storage

  • Yu, Xu;Park, Ho Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.491.1-491.1
    • /
    • 2014
  • Heteroatom phosphorous-doped graphene aerogel (PGA) with high surface area is successfully synthesized via hydrothermal method for high power and energy supercapacitors, including the advantage of three dimensional internetwork and constitutive graphene skeletons. The morphology of PGA was investigated by the scanning electron microscope, transmission electron microscope. The chemical structure and circumstances were confirmed by Raman and X-ray photoelectron spectroscopy, the phosphorus is successfully incorporated with the graphene sheets. As evidenced by electrochemical measurements, cyclic voltammetry and galvanostatic charge discharge, the hierarchically PGA has an unprecedented high capacitance, which contributes to the excellent high-rate performance of this material for supercapacitor application.

  • PDF

Quantitative estimation of reversibility of the discharge process undergone by nickel hydroxide film cathodically deposited on pure nickel as a positive supercapacitor electrode using cyclic voltammetry and potential drop method

  • Pyun Su-Il;Moon Sung-Mo
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • This work presents the way how to evaluate the degree of reversibility of the discharging process undergone by the nickel hydroxide film cathodically deposited on pure nickel as a positive electrode for electrochemical capacitor using the combined cyclic voltammetry and potential drop method, supplemented by galvanostatic discharge and open-circuit potential transient methods. The time interval necessary just to establish the current reversal of anodic to cathodic direction from the moment just after applying the potential inversion of anodic to cathodic direction, was obtained on cyclic voltammogram. The cathodic charge density passed upon dropping the applied potential, was calculated on potentiostatic current density-time curve. Both the time interval and the cathodic charge density in magnitude can be regarded as being measures of the degree of reversibility of the discharging process undergone by the positive active material for supercapacitor, i.e. , the longer the time interval is, the lower is the degree of reversibility and the greater the cathodic charge density is, the higher is the degree of reversibility. From the applied potential dependences of the time interval and cathodic charge density, discharge at $0.42 V_{SCE}$ was determined to be the most reversible.

Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell

  • Doh, Chil-Hoon;Kim, Seong Il;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay Hyeok;Min, Byung Chul;Moon, Seong-In;Yun, Mun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1175-1180
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of polyaniline (PAn) coated on silicone powder. The physical and electrochemical properties of the Si-C composites were characterized by particle-size analysis, X-ray diffraction, scanning electron microscopy, and battery electrochemical tests. The average particle size of Si was increased by the coating of Pan but somewhat reduced by the carbonization to give silicone-carbon composites. The co-existence of crystalline silicone and amorphous-like carbon was confirmed by XRD analyses. SEM photos showed that the silicone particles were well covered with carbonaceous materials, depending on the PAn content. Si-C$\mid$Li cells were fabricated using the Si-C composites and tested using galvanostatic charge-discharge. Si-C$\mid$Li cells gave better electrochemical properties than Si|Li cells. Si-C$\mid$Li cells using Si-C from HCl-undoped precursor PAn showed better electrochemical properties than precursor PAn doped in HCl. The addition of an electrolyte containing 4-fluoroethylene carbonate (FEC) increased the initial discharge capacity. Also, another electrochemical test, the galvanostatic charge-discharge test with GISOC (gradual increasing of the state of charge) was carried out. Si-C(Si:PAn = 50:50 wt. ratio)|Li cell showed 414 mAh/g of reversible specific capacity, 75.7% of IIE (initial intercalation efficiency), 35.4 mAh/g of IICs (surface irreversible specific capacity).

Charge-discharge Characteristics of $LiCoO_2/Li$ Rechargeable Cell ($LiCoO_2/Li$ 2차전지의 충방전 특성)

  • Moon, S.I.;Doh, C.H.;Jeong, E.D.;Kim, B.S.;Park, D.W.;Yun, M.S.;Yeom, D.H.;Jeong, M.Y.;Park, C.J.;Yun, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.79-84
    • /
    • 1993
  • This paper describes the development of lithium rechargeable cell. $LiCoO_2$ is recently recognized as a suitable cathode active material of a high voltage, high energy lithium rechargeable batteries because $Li^+$ ion can be electrochemically deintercalated/intercalated from/to $Li_xCoO_2$. The transition metal oxide of $LiCoO_2$ was investigated for using as a cathode active material of 4V class Li rechargeable cell. $LiCoO_2$ cathode was prepared by using a active material of 85 wt%, graphite powder of 12 wt% as a conductor and poly-vinylidene fluoride of 3 wt% as a binder. The electrochemical and charge/discharge properties of $LiCoO_2$ were investigated by cyclic voltammetry and galvanostatic charge/discharge. The open circuit voltage of prepared $LiCoO_2$ electrode exhibited approximately. potential range between 3.32V and 3.42V. During the galvanostatic charge/discharge, $LiCoO_2/Li$ cell showed stable cycling behavior at scan rate of 1mV/sec and potential range between 3.6V and 4.2V. Also its coulombic efficiency as function of cycling was 81%~102%. In this study the $LiCoO_2/Li$ cell showed the available discharge capacity of 90.1 mAh/g at current density of $1mA/cm^2$ and cell discharge voltage range between 3.6V~4.2V.

  • PDF