• Title/Summary/Keyword: galvanic cell

Search Result 54, Processing Time 0.02 seconds

Coreless Hall Current Sensor for Automotive Inverters Decoupling Cross-coupled Field

  • Kim, Ho-Gi;Kang, Gu-Bae;Nam, Dong-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2009
  • Automotive inverters may require current sensors for motor torque control, especially, in applications of hybrid electric vehicles or fuel cell vehicles. In this paper, to achieve a compact, integrated and low cost current sensor, a hall current sensor without magnetic core is introduced for integrating an automotive inverter. The compactness of the current sensor is possible by using integrated magnetic concentrators based on the Hall effect. Magnetic fields caused by three-phase currents are analyzed and a magnetic shield design is proposed for decoupling the cross-coupled field. It offers galvanic isolation, wide bandwidth (>100kHz), and accuracy(< 1%). Using 2D FEM analysis, its performance is demonstrated with design parameters at a U-shaped magnetic shield. The proposed coreless current sensor is tested with rated current to validate the linearity and accuracy.

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

Bidirectional Power Conversion of Isolated Switched-Capacitor Topology for Photovoltaic Differential Power Processors

  • Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1629-1638
    • /
    • 2016
  • Differential power processing (DPP) systems are among the most effective architectures for photovoltaic (PV) power systems because they are highly efficient as a result of their distributed local maximum power point tracking ability, which allows the fractional processing of the total generated power. However, DPP systems require a high-efficiency, high step-up/down bidirectional converter with broad operating ranges and galvanic isolation. This study proposes a single, magnetic, high-efficiency, high step-up/down bidirectional DC-DC converter. The proposed converter is composed of a bidirectional flyback and a bidirectional isolated switched-capacitor cell, which are competitively cheap. The output terminals of the flyback converter and switched-capacitor cell are connected in series to obtain the voltage step-up. In the reverse power flow, the converter reciprocally operates with high efficiency across a broad operating range because it uses hard switching instead of soft switching. The proposed topology achieves a genuine on-off interleaved energy transfer at the transformer core and windings, thus providing an excellent utilization ratio. The dynamic characteristics of the converter are analyzed for the controller design. Finally, a 240 W hardware prototype is constructed to demonstrate the operation of the bidirectional converter under a current feedback control loop. To improve the efficiency of a PV system, the maximum power point tracking method is applied to the proposed converter.

Activity Measurement of Zn in Liquid Zn-Cd Alloy Using EMF Method (기전력법을 이용한 용융 Zn-Cd 합금중 Zn의 활동도 측정)

  • Jeong, Seong-Yeop;Jeong, U-Gwang;Park, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.283-289
    • /
    • 2002
  • The E.M.F of the galvanic cell with fused salt was measured to determine the activities of zinc at 700-820K over the entire composition range of liquid Zn-Cd alloys. The cell used was as follows: (-) W | Zn(pure) $Zn^{2+}(KCI-LiCl)$ | Zn(in Zn-Cd alloy) | W (+) The activities of zinc in the alloys showed positive deviation from Raoult's law over the entire composition range. The activity of cadmium and some thermodynamic functions such as Gibbs free energy, enthalpy, entropy were derived from the results by the thermodynamic relationship. The comparison of the results and the literature data was made. The liquid Zn-Cd alloy is found to be close to the regular solution. The concentration fluctuations in long wavelength limit, $S_{cc}(o)$, in the liquid alloy was calculated from the results.

Analysis of Voltaic Cell Described in the Science Textbooks of Secondary Schools (중·고등학교 과학 교과서에 제시된 볼타전지에 대한 문제점 분석)

  • Sin, Dong-Hyeok;Lee, Sang-Gwon;Choe, Byeong-Sun
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.363-377
    • /
    • 2002
  • The purpose of this study was to improve the problems of the voltaic cell described in the science textbooks of secondary schools. For this purpose, the contents of science textbooks which are related to the voltaic cell were analyzed and the problems which were not explained clearly by theorems were tried to be explained by experiments, and lastly sug-gestions were made toward the improvements regarding the voltaic cell in the science textbooks. The findings are that there are problems on the ways of ensuring whether the voltaic cell operates properly as a chemical battery, on the explanation of why the hydrogen bubbles form at the zinc electrode, on the cell potential, on the unification of the electrode terminology used, and on the mention of the current. Solutions to the problems except the cell potential were suggested. According to the experiment, the theoretical potential was calculated by considering the potentials of redox reactions at the two electrodes of the cell and by taking into account the characteristics of the electrodes such as the work function, ionization energy, stan-dard reduction potential, and electronegativity.The cell potential of the voltaic cell is explained by several factors. In the improved version of the textbook's introduction section to the voltaic cell, it is necessary to describe the voltaic cell his-torically.For the conceptual section, it should be explained in terms of the Daniel cell.

Newly Developed BioDegradable Mg Alloys and Its Biomedical Applications

  • Seok, Hyeon-Gwang;Kim, Yu-Chan;Yang, Gui Fu;Cha, Pil-Ryeong;Jo, Seong-Yun;Yang, Seok-Jo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.55.2-55.2
    • /
    • 2012
  • Intensive theoretical and experimental studies have been carried out at Korean Institute of Science and Technology (KIST) on controlling the bio absorbing rate of the Mg alloys with high mechanical strength through tailoring of electrochemical potential. Key technology for retarding the corrosion of the Mg alloys is to equalize the corrosion potentials of the constituent phases in the alloys, which prevented the formation of Galvanic circuit between the constituent phases resulting in remarkable reduction of corrosion rate. By thermodynamic consideration, the possible phases of a given alloy system were identified and their work functions, which are related to their corrosion potentials, were calculated by the first principle calculation. The designed alloys, of which the constituent phases have similar work function, were fabricated by clean melting and extrusion system. The newly developed Mg alloys named as KISTUI-MG showed much lower corrosion rate as well as higher strength than previously developed Mg alloys. Biocompatibility and feasibility of the Mg alloys as orthopedic implant materials were evaluated by in vitro cell viability test, in vitro degradation test of mechanical strength during bio-corrosion, in vivo implantation and continuous observation of the implant during in vivo absorbing procedures. Moreover, the cells attached on the Mg alloys was observed using cryo-FIB (focused ion beam) system without the distortion of cell morphology and its organ through the removal of drying steps essential for the preparation of normal SEM/TEM samples. Our Mg alloys showed excellent biocompatibility satisfying the regulations required for biomedical application without evident hydrogen evolution when it implanted into the muscle, inter spine disk, as well as condyle bone of rat and well contact interface with bone tissue when it was implanted into rat condyle.

  • PDF

Relationship between squamous cell carcinoma of the tongue and the position of dental prosthesis

  • Fan, Huan;Yoon, Ki-Yong;Kim, Soung-Min;Myoung, Hoon;Lee, Jong-Ho;Kim, Myung-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.129-137
    • /
    • 2015
  • PURPOSE. Squamous cell carcinoma (SCC) of the tongue has a relatively high incidence of all oral cancers. Some studies have reported a relationship between intraoral dental prosthesis and SCC of the tongue; however, this relationship remains controversial. The purpose of this study was to investigate the relationship between SCC of the tongue and the positional aspects of dental prosthesis using a retrospective analysis. MATERIALS AND METHODS. A total of 439 patients with SCC of the tongue were diagnosed and treated in the Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital. Patients were treated over a 12.5-year period ranging from January 1, 2001 to June 30, 2013. Statistical analysis was performed to examine potential differences between the groups. RESULTS. The number of patients with a crown and/or a bridge (134, 63.5%) was significantly different than the number of patients without a prosthesis (77, 36.5%). Even after accounting for different types of prostheses such as crowns, bridges, and dentures, no significant differences were observed between the position of the prosthesis and the location of the SCC of the tongue, with significance defined as a P-value less than .05 by the Pearson-Chi square test. CONCLUSION. Patients with crowns and/or bridges exhibited more frequent SCC of the tongue compared with patients without these prosthesis. These data support the hypothesis that mechanical trauma and galvanic phenomena play a role in the etiology of SCC of the tongue.

Electrical Characteristics of Porous Carbon Electrode According to NaCl Electrolyte Concentration (NaCl 전해질 농도 변화에 따른 다공질 탄소전극의 전기적 특성)

  • Kim, Yong-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.814-819
    • /
    • 2010
  • Porous carbon electrodes with wooden materials are manufactured by molding carbonized wood powder. Electrical properties of the interface for electrolyte and porous carbon electrode are investigated from viewpoint of NaCl electrolyte concentration, capacitance and complex impedance. Density of porous carbon materials is 0.47~0.61 g/$cm^3$. NaCl electrolytic absorptance of the porous carbon materials is 5~30%. As the electrolyte concentration increased, capacitance is increased and electric resistance is decrease with electric double layer effect of the interface. The electric current of the porous carbon electrode compared in the copper and the high density carbon electrode was improved on a large scale, due to a increase in surface area. The circuit current increased as the distance between of the porous carbon electrode and the zinc electrode decreased, due to increase in electric field. Experimental results indicated that the current properties of galvanic cell could be improved by using porous carbon electrode.

Mechanical Property and Corrosion Resistance of Mg-Zn-Y Alloys Containing Icosahedral Phase (준결정상을 포함한 Mg-Zn-Y 합금의 기계적 특성 및 부식 저항성)

  • Kim, Do Hyung;Kim, Young Kyun;Kim, Won Tae;Kim, Do Hyang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.145-152
    • /
    • 2011
  • Mechanical and property corrosion resistance of Mg-Zn-Y alloys with an atomic ratio of Zn/Y of 6.8 are investigated using optical microscopy, scanning electron microscopy, transmission electron microscopy, uniaxial tensile test and corrosion test with immersion and dynamic potentiometric tests. The alloys showed an in-situ composite microstructure consisting of ${\alpha}$-Mg and icosahedral phase (I-phase) as a strengthening phase. As the volume fraction of the I-phase increases, the yield and tensile strengths of the alloys increase while maintaining large elongation (26~30%), indicating that I-phase is effective for strengthening and forms a stable interface with surrounding ${\alpha}$-Mg matrix. The presence of I-phase having higher corrosion potential than ${\alpha}$-Mg, decreased the corrosion rate of the cast alloy up to I-phase volume fraction of 3.7%. However further increase in the volume fraction of the I-phase deteriorates the corrosion resistance due to enhanced internal galvanic corrosion cell between ${\alpha}$-Mg and I-phase.

Change in Corrosion Resistance of Solution-Treated AZ91-X%Sn Magnesium Alloys (용체화처리한 AZ91-X%Sn 마그네슘 합금의 부식 저항성 변화)

  • Moon, Jung-Hyun;Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.229-238
    • /
    • 2015
  • The effects of Sn addition and solution treatment on corrosion behavior were studied in AZ91 magnesium casting alloy. The addition of 5%Sn contributed to the introduction of $Mg_2Sn$ phase, to the reduction in dendritic cell size and to the increase in the amount of secondary phases. After the solution treatment, trace amount of $Al_8Mn_5$ particles were observed in the ${\alpha}$-(Mg) matrix for the AZ91 alloy, while $Mg_2Sn$ phase with high thermal stability was additionally found in the AZ91-5%Sn alloy. Before the solution treatment, the AZ91-5%Sn alloy had better corrosion resistance than the Sn-free alloy, which is caused by the enhanced barrier effect of the (${\beta}+Mg_2Sn$) phases formed more continuously along the dendritic cell boundaries. It is interesting to note that after the solution treatment, the corrosion rate of both alloys became increased, but the Sn-added alloy showed higher corrosion rate than the Sn-free alloy. The microstructural examination on the corroded surfaces revealed that the remaining $Mg_2Sn$ particles in the solution-treated AZ91-5%Sn alloy play a role in accelerating corrosion by galvanic coupling with the ${\alpha}$-(Mg) matrix.