• Title/Summary/Keyword: galerkin principle

Search Result 141, Processing Time 0.024 seconds

On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.659-674
    • /
    • 2020
  • The present paper employs nonlocal strain gradient theory (NSGT) to study buckling behavior of functionally graded magneto-electro-thermo-elastic (FG-METE) nanoshells under various physical fields. NSGT modeling of the nanoshell contains two size parameters, one related to nonlocal stress field and another related to strain gradients. It is considered that mechanical, thermal, electrical and magnetic loads are exerted to the nanoshell. Temperature field has uniform and linear variation in nanoshell thickness. According to a power-law function, piezo-magnetic, thermal and mechanical properties of the nanoshell are considered to be graded in thickness direction. Five coupled governing equations have been obtained by using Hamilton's principle and then solved implementing Galerkin's method. Influences of temperature field, electric voltage, magnetic potential, nonlocality, strain gradient parameter and FG material exponent on buckling loads of the FG-METE nanoshell have been studied in detail.

Nonlinear vibration of laminated composite plates subjected to subsonic flow and external loads

  • Norouzi, Hamed;Younesian, Davood
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1261-1280
    • /
    • 2016
  • We study chaotic motion in a nonlinear laminated composite plate under subsonic fluid flow and a simultaneous external load in this paper. We derive equations of motion of the plate using the von-$K{\acute{a}}rm{\acute{a}}n^{\prime}s$ hypothesis and the Hamilton's principle. Galerkin's approach is adopted as the solution method. We then conduct a divergence analysis to obtain critical velocities of the transient flow. Melnikov's integral approach is used to find the critical parameters in which chaos takes place. Effects of different parameters including the aspect ratio, plate material and the ply angle in laminates on the critical flow speed are investigated. In a parametric study, we show that how the linear and nonlinear stiffness of the plate and the load frequency and amplitude would influence the chaotic behavior of the plate.

Vibration Control of Flexible Robot Manipulator (유연한 로보트 팔의 진동제어)

  • Park, Young-Pil;Ha, Young-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.28-38
    • /
    • 1986
  • An analytical and experimental investigation is made to the dynamic responese of a cantilever with a tip mass that models some of the basic phenomena involved in the response of a flexible manipulator with a tip mass on its free end under the given rotating motion. The system equation is derived from the Hamilton's principle on the basis of the Euler-Bernoulli hypothesis and an approximate solution is obtained from model analysis using Galerkin's method for the vibation response of the system subjected to a sudden stop after an impulsive rotation. Experiment was performed to verify the validity of the theoretical analysis. Results are given for the vibration amplitude of the free end with respect to tip mass ratio, non-dimensionalized rotating velocity, rotating angle and non- dimensionalized hub length. The rotating condition to minimize the vibration amplitude of the free end can be determined for the given basic paramenters.

  • PDF

Natural Frequency Analysis of an Extensible Curved Pipe Conveying Fluid (유체가 흐르는 인장 가능한 곡선관의 고유진동수 해석)

  • Jung, Du-Han;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.792-795
    • /
    • 2005
  • The vibration of a curved pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bemoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived. To investigate the dynamic characteristics of the system the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed. From these results, we should consider the nonlinearity to analyze dynamics of a curved pipe conveying fluid more precisely.

  • PDF

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Ryu, B.J.;Jung, S.H.;Shin, G.B.;Han, H.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.465-468
    • /
    • 2005
  • The paper deals with the influences of external damping and tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

  • PDF

Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Thermal buckling of nonlocal flexoelectric nanoplates incorporating surface effects is analyzed for the first time. Coupling of strain gradients and electrical polarizations is introduced by flexoelectricity. It is assumed that flexoelectric nanoplate is subjected to uniform and linear temperature distributions. Long range interaction between atoms of nanoplate is modeled via nonlocal elasticity theory. The residual surface stresses which are usually neglected in modeling of flexoelectric nanoplates are incorporated into nonlocal elasticity to provide better understanding of the physic of problem. A Galerkin-based approach is implemented to solve the governing equations derived from Hamilton's principle are solved. The verification of obtained results is performed by comparing buckling loads of flexoelectric nanoplate with previous data. It is shown that buckling loads of flexoelectric nanoplate are significantly affected by thermal loading type, temperature change, nonlocal parameter, surface effect, plate thickness and boundary conditions.

On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading

  • Shariati, Ali;Ebrahimi, Farzad;Karimiasl, Mahsa;Vinyas, M.;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 2020
  • This paper investigates the vibration characteristics of flexoelectric nanobeams resting on viscoelastic foundation and subjected to magneto-electro-viscoelastic-hygro-thermal (MEVHT) loading. In this regard, the Nonlocal strain gradient elasticity theory (NSGET) is employed. The proposed formulation accommodates the nonlocal stress and strain gradient parameter along with the flexoelectric coefficient to accurately predict the frequencies. Further, with the aid of Hamilton's principle the governing differential equations are derived which are then solved through Galerkin-based approach. The variation of the natural frequency of MEVHT nanobeams under the influence of various parameters such as the nonlocal strain gradient parameter, different field loads, power-law exponent and slenderness ratio are also investigated.

Dynamic stability of a metal foam rectangular plate

  • Debowski, D.;Magnucki, K.;Malinowski, M.
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.151-168
    • /
    • 2010
  • The subject of the paper is an isotropic metal foam rectangular plate. Mechanical properties of metal foam vary continuously through plate of the thickness. A nonlinear hypothesis of deformation of plane cross section is formulated. The system of partial differential equations of the plate motion is derived on the basis of the Hamilton's principle. The system of equations is analytically solved by the Bubnov-Galerkin method. Numerical investigations of dynamic stability for family rectangular plates with respect analytical solution are performed. Moreover, FEM analysis and theirs comparison with results of numerical-analytical calculations are presented in figures.

Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities

  • Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.393-414
    • /
    • 2017
  • Forced vibration behavior of porous metal foam nanoplates on elastic medium is studied via a 4-variable plate theory. Different porosity distributions called uniform, symmetric and asymmetric are considered. Nonlocal strain gradient theory (NSGT) containing two scale parameters is employed for size-dependent modeling of porous nanoplates. The present plate theory satisfies the shear deformation effect and it has lower field variables compared with first order plate theory. Hamilton's principle is employed to derive the governing equations. Obtained results from Galerkin's method are verified with those provided in the literature. The effects of nonlocal parameter, strain gradient, foundation parameters, dynamic loading, porosity distributions and porosity coefficient on dynamic deflection and resonance frequencies of metal foam nanoscale plates are examined.

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.