• 제목/요약/키워드: galaxy structure

검색결과 195건 처리시간 0.023초

MOLECULAR CLOUDS WITH PECULIAR VELOCITY IN THE OUTER LOCAL ARM

  • Kang, Mi-Ju;Lee, Young-Ung
    • 천문학회지
    • /
    • 제39권4호
    • /
    • pp.107-114
    • /
    • 2006
  • We conducted an analysis of a selected region from the FCRAO $^{12}CO$ Outer Galaxy Survey. The selected region is located between galactic longitude $117^{\circ}$ and $124^{\circ}$ with the velocity of -23 km $s^{-1}. Molecular clouds in this region show a peculiar velocity field, protruding from the Local Arm population. The selected region is divided into 7 clouds by spatial location. Though we were not able to identify the direct driving source for peculiar velocity of our target region, we find that there are several internal YSOs or star forming activities; there are many associated sources like an outflows, a high-mass protostellar candidate and $H_2O$ maser sources. We attribute the driving energy source to older generation of episodic star formation. Masses of main clouds(cloud 1-4) estimated using a conversion factor from $^{12}CO$ luminosity are larger than $10^4M_{\odot}$. Other components have a small mass as about $10^3M_{\odot}$. Among main clouds, cloud 2 and 4 seem to be marginally gravitational bound systems as their ratio of $M_{CO}$ to $M_{VIR}$ is about $2{\sim}3$, and the internal velocity dispersion is larger than the centroid velocity dispersion. Total mass estimated using a conversion factor from $^{12}CO$ luminosity is $7.9{\times}10^4M_{\odot}$.

THE INITIAL CONDITIONS AND EVOLUTION OF ISOLATED GALAXY MODELS: EFFECTS OF THE HOT GAS HALO

  • Hwang, Jeong-Sun;Park, Changbom;Choi, Jun-Hwan
    • 천문학회지
    • /
    • 제46권1호
    • /
    • pp.1-32
    • /
    • 2013
  • We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 N-body/hydrodynamic simulation code, paying particular attention to the effects of the gaseous halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component, particularly in the gas dissipation and the star formation activity in the disk. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. Whereas the SFRs in the models with a gas halo, depending on the density profile and the total mass of the gas halo, emerge to be either relatively flat throughout the simulations or increasing until the middle of the run (over a gigayear) and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than those in the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored. We also expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components.

BVI PHOTOMETRIC STUDY OF THE OLD OPEN CLUSTER RUPRECHT 6

  • Kim, Sang Chul;Kyeong, Jaemann;Park, Hong Soo;Han, Ilseung;Lee, Joon Hyeop;Moon, Dae-Sik;Lee, Youngdae;Kim, Seongjae
    • 천문학회지
    • /
    • 제50권3호
    • /
    • pp.79-92
    • /
    • 2017
  • We present a BV I optical photometric study of the old open cluster Ruprecht 6 using the data obtained with the SMARTS 1.0 m telescope at the CTIO, Chile. Its color-magnitude diagrams show the clear existence of the main-sequence stars, whose turn-off point is located around $V{\approx}18.45mag$ and $B-V{\approx}0.85mag$. Three red clump (RC) stars are identified at V = 16.00 mag, I = 14.41 mag and B - V = 1.35 mag. From the mean $K_s-band$ magnitude of RC stars ($K_s=12.39{\pm}0.21mag$) in Ruprecht 6 from 2MASS photometry and the known absolute magnitudes of the RC stars ($M_{K_S}=-1.595{\pm}0.025mag$), we obtain the distance modulus to Ruprecht 6 of $(m-M)_0=13.84{\pm}0.21mag$ ($d=5.86{\pm}0.60kpc$). From the ($J-K_s$) and (B - V ) colors of the RC stars, comparison of the (B - V ) and (V - I) colors of the bright stars in Ruprecht 6 with those of the intrinsic colors of dwarf and giant stars, and the PARSEC isochrone fittings, we derive the reddening values of E(B - V ) = 0.42 mag and E(V - I) = 0.60 mag. Using the PARSEC isochrone fittings onto the color-magnitude diagrams, we estimate the age and metallicity to be: $log(t)=9.50{\pm}0.10(t=3.16{\pm}0.82Gyr)$ and $[Fe/H]=-0.42{\pm}0.04dex$. We present the Galactocentric radial metallicity gradient analysis for old (age > 1 Gyr) open clusters of the Dias et al. catalog, which likely follow a single relation of $[Fe/H]=(-0.034{\pm}0.007)R_{GC}+(0.190{\pm}0.080)$ (rms = 0.201) for the whole radial range or a dual relation of $[Fe/H]=(-0.077{\pm}0.017)R_{GC}+(0.609{\pm}0.161)$ (rms = 0.152) and constant ([Fe/H] ~ -0.3 dex) value, inside and outside of RGC ~ 12 kpc, respectively. The metallicity and Galactocentric radius ($13.28{\pm}0.54kpc$) of Ruprecht 6 obtained in this study seem to be consistent with both of the relations.

LOW-LEVEL RADIO EMISSION FROM RADIO GALAXIES AND IMPLICATIONS FOR THE LARGE SCALE STRUCTURE

  • KRISHNA GOPAL;WIITA PAUL J.;BARAI PARAMITA
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.517-525
    • /
    • 2004
  • We present an update on our proposal that during the 'quasar era' (1.5 $\le$ z $\le$ 3), powerful radio galaxies could have played a major role in the enhanced global star-formation, and in the widespread magnetization and metal pollution of the universe. A key ingredient of this proposal is our estimate that the true cosmological evolution of the radio galaxy population is likely to be even steeper than what has been inferred from flux-limited samples of radio sources with redshift data, when an allowance is made for the inverse Compton losses on the cosmic microwave background which were much greater at higher redshifts. We thus estimate that a large fraction of the clumps of proto-galactic material within the cosmic web of filaments was probably impacted by the expanding lobes of radio galaxies during the quasar era. Some recently published observational evidence and simulations which provide support for this picture are pointed out. We also show that the inverse Compton x-ray emission from the population of radio galaxies during the quasar era, which we inferred to be largely missing from the derived radio luminosity function, is still only a small fraction of the observed soft x-ray background (XRB) and hence the limit imposed on this scenario by the XRB is not violated.

A multi-wavelength study of N63A: A SNR within an H II region in the LMC.

  • Aliste C., Rommy L.S.E.;Koo, Bon-Chul;Lee, Yong-Hyun
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.54.3-55
    • /
    • 2017
  • The nature and physical environments of SNRs are diverse, and for this reason, the understanding of the properties of nearby SNRs is useful in interpreting the emission from SNRs in remote galaxies where we cannot resolve them. In this regard, the LMC is a unique place to study SNRs due to its proximity, location, and composition compared with our galaxy. We carried out a multi-wavelength study of SNR N63A in the LMC, a young remnant of the SN explosion of one of the most massive (> 40 Msun) stars in a cluster. It is currently expanding within a large H II region formed by OB stars in the cluster and engulfing a molecular cloud (MC). As such, N63A is a prototypical SNR showing the impact of SN explosion on the cluster and its environment. Its morphology varies strongly across the wave bands, e.g. the size in X-ray is three times larger than in optical. However, the bright optical nebula would correspond to a MC swept up by the SNR, and consequently the interaction SNR-MC is limited to the central portion of the SNR. We aimed to study the overall structure of N63A, using near-IR imaging and spectroscopic observations to obtain the physical parameters of the atomic shocks, and also to understand how the SNR- MC interaction works and reveal the structure of the shocked cloud as well as the consequences of the impact of the SNR shock on the MC, comparing information obtained in different wavelengths.

  • PDF

Cosmology with peculiar velocity surveys

  • Qin, Fei
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.43.5-44
    • /
    • 2021
  • In the local Universe, the gravitational effects of mass density fluctuations exert perturbations on galaxies' redshifts on top of Hubble's Law, called 'peculiar velocities'. These peculiar velocities provide an excellent way to test the cosmological model in the nearby Universe. In this talk, we present new cosmological constraints using peculiar velocities measured with the 2MASS Tully-Fisher survey (2MTF), 6dFGS peculiar-velocity survey (6dFGSv), the Cosmicflows-3 and Cosmicflows-4TF compilation. Firstly, the dipole and the quadrupole of the peculiar velocity field, commonly named 'bulk flow' and 'shear' respectively, enable us to test whether our cosmological model accurately describes the motion of galaxies in the nearby Universe. We develop and use a new estimators that accurately preserves the error distribution of the measurements to measure these moments. In all cases, our results are consistent with the predictions of the Λ cold dark matter model. Additionally, measurements of the growth rate of structure, fσ8 in the low-redshift Universe allow us to test different gravitational models. We developed a new estimator of the "momentum" (density weighted peculiar velocity) power spectrum and use joint measurements of the galaxy density and momentum power spectra to place new constraints on the growth rate of structure from the combined 2MTF and 6dFGSv data. We recover a constraint of fσ8=0.404+0.082-0.081 at an effective redshift zeff=0.03. This measurement is also fully consistent with the expectations of General Relativity and the Λ Cold Dark Matter cosmological model.

  • PDF

ULTRA HIGH ENERGY COSMIC RAYS AND CLUSTERS

  • JONES T. W.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.421-426
    • /
    • 2004
  • I briefly review the current theoretical status of the origins of ultrahigh energy cosmic rays with special emphasis on models associated with galaxy clusters. Some basic constraints on models are laid out, including those that apply both to so-called 'top-down' and 'bottom-up' models. The origins of these UHECRs remain an enigma; no model stands out as a clear favorite. Large scale structure formation shocks, while very attractive conceptually in this context, are unlikely to be able to accelerate particles to energies much above $10^{18}eV$. Terminal shocks in relativistic AGN jets seem to be more viable candidates physically, but suffer from their rarity in the local universe. Several other, representative, models are outlined for comparison.

OKAYAMA ASTROPHYSICAL OBSERVATORY WIDE-FIELD CAMERA

  • YANAGISAWA KENSHI
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.109-112
    • /
    • 2005
  • We present the design, expected performance, and current status of the wide field near-infrared camera (OAOWFC) now being developed at Okayama Astrophysical Observatory, NAOJ, NINS. OAOWFC is a near-infrared survey telescope whose effective aperture is 91cm. It works at Y, J, H, and $K_s$ bands and is dedicated to the survey of long period variable stars in the Galactic plane. The field of view is $0.95 {\times} 0.95 deg^2$ which is covered by one HAWAII-2 RG detector of 2048 ${\times}$ 2048 pixels with the pixel size of $18.5 {\mu}m\;{\times}\;18.5{\mu}m$, that results in the sampling pitch of 1.6 arcsec/pixel. OAOWFC can sweep the area of $840 deg^2$ every 3 weeks, attaining a limiting magnitude of 13 in $K_s$ band. It allows us to observe long period variables embedded in the Galactic plane where interstellar extinction is severe in optical.

KaVA Q-band Monitoring of Sgr A* in 2013-2014

  • Zhao, Guang-Yao;Akiyama, Kazunori;Kino, Motoki;Sohn, Bong Won
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.38.4-39
    • /
    • 2015
  • We have been monitoring Sgr A*, the radio source at the center of our galaxy, continuously since G2 encounter was predicted. KaVA is a powerful High resolution imaging array at K and Q band, and it has a excellent uv-coverage for Sgr A*. Together with 1-Gbps recording, our observations have provided high-quality images of Sgr A* at Q-band. Our images reveal a scatter-broadened, elliptical Gaussian structure of the source. We found no significant flux or structural variation of Sgr A* in 2013-2014, which is consistent with recent simulations by Kawashima et al. Continuous monitoring in the coming few years would be able to capture the possible flux increase in the source caused by G2, which will lead to better understanding of the accretion process around supermassive black holes.

  • PDF

PPMXL PHOTOMETRIC STUDY OF FOUR OPEN CLUSTER CANDIDATES (IVANOV 2, IVANOV 7, IVANOV 9 AND HARVARD 9)

  • Tadross, A.L.;Bendary, R.
    • 천문학회지
    • /
    • 제47권4호
    • /
    • pp.137-145
    • /
    • 2014
  • The astrophysical parameters of four unstudied open star cluster candidates; Ivanov 2, 7, 9, and Harvard 9; are estimated for the first time using the PPMXL database. The stellar density distributions and color-magnitude diagrams for each cluster are used to determine the geometrical structure (cluster center, limited radius, core and tidal radii, the distances from the Sun, from the Galactic center and from the Galactic plane). Also, the main photometric parameters (age, distance modulus, color excesses, membership, total mass, relaxation time, luminosity and mass functions) are estimated.