• Title/Summary/Keyword: galaxy: morphology

Search Result 114, Processing Time 0.022 seconds

Deciphering Diverse Color Distribution Functions of Globular Cluster Systems

  • Lee, Sang-Yoon;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.33.2-33.2
    • /
    • 2015
  • The color distribution functions (CDFs) of globular clusters (GCs) in individual early-type galaxies show great diversity in their morphology. Based on the conventional "linear" relationship between colors and metallicities of GCs, the inferred GC metallicity distribution functions and thus their formation histories should be as diverse as they appear. In contrast, an alternative scenario rooted in the "nonlinear" nature of the color-to-metallicity transformation finds the various CDFs pointing systematically to a simple picture, i.e., such a high degree of variety stems predominately from only one parameter, the mean metallicity of GCs. The simulated CDFs of GCs aimed to reproduce 67 massive early-type galaxies from the ACS Virgo & Fornax Cluster Survey show that over 70% of the CDFs concur fully with the nonlinearity scenario. We discuss our new findings in terms of early-type galaxy formation in the cluster environment.

  • PDF

Infrared Properties of the Abell 2199 Supercluster

  • Lee, Gwang-Ho;Lee, Myung-Gyoon;Hwang, Ho-Seong;Sohn, Ju-Bee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2012
  • The A2199 supercluster at z=0.03 is one of the most massive system in nearby universe. In this supercluster, A2199 is kinematically connected to A2197 and several infalling galaxy groups. Thanks to a high-density environment and complex structures around A2199, this supercluster is an excellent laboratory for studying galaxy evolution. We determine the membership of galaxies in the supercluster using radial velocities of galaxies drawn from the SDSS spectroscopic DR7 data. We present an infrared view of this supercluster using AKARI and WISE data. We compare spatial distributions between early- and late-type galaxies, and also AGNs and star-forming galaxies. We also investigate how local and cluster-scale environments affect galaxy properties, such as IR-properties, star formation rates, and morphology transformations.

  • PDF

The Relationship Between Bright Galaxies and Their Faint Companions in Abell 2744, an Ongoing Cluster-Cluster Merger

  • Lee, Hye-Ran;Lee, Joon Hyeop;Kim, Minjin;Ree, Chang Hee;Jeong, Hyunjin;Kyeong, Jaemann;Kim, Sang Chul;Lee, Jong Chul;Ko, Jongwan;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.52-52
    • /
    • 2014
  • It is widely accepted that the evolution of galaxies is accelerated in dense environments. According to recent studies, however, the evolution by direct interactions between galaxies is known to be most active in a galaxy group rather than in a galaxy cluster. In particular, the central galaxy in a group is closely related to its satellites in the properties such as morphology, color and star formation rate, because those galaxies evolve together in a small-scale environment. Currently, however, it is not yet studied well whether such conformity between bright galaxies and their faint companions remains after a galaxy group falls into a galaxy cluster. Recently, Lee et al. (2014) have found that the colors of bright galaxies show a measurable correlation with the mean colors of faint companions around them in WHL J085910.0+294957, a galaxy cluster at z = 0.3, which may be the vestige of infallen groups in the cluster. As a follow-up study, we study Abell 2744, an ongoing cluster-cluster merger at z = 0.308, using the HST Frontier Fields Survey data. The cluster members are selected based on the distributions of color, size and concentration along magnitude. The correlation in color between bright galaxies and their companions is not found in the full area of Abell 2744. However, when the area is limited to the southeastern part of the Abell 2744 image, the mean color of faint companions shows marginal dependence (> $2{\sigma}$ to Bootstrap uncertainties) on the color of their adjacent bright galaxy. We discuss the implication of these results, focusing on their dependence on local environments.

  • PDF

The temperature and density distribution of molecular gas in a galaxy undergoing strong ram pressure: a case study of NGC 4402

  • Lee, Bumhyun;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.77.2-77.2
    • /
    • 2015
  • Galaxies are known to evolve passively in the cluster environment. Indeed, much evidence for HI stripping has been found in cluster galaxies to date, which is likely to be connected to their low star formation rate. What is still puzzling however, is that the molecular gas, which is believed to be more directly related to star formation, shows no significant difference in its fraction between the cluster population and the field galaxies. Therefore, HI stripping alone does not seem to be enough to fully understand how galaxies become passive in galaxy clusters. Intriguingly, our recent high resolution CO study of a subsample of Virgo spirals which are undergoing strong ICM pressure has revealed a highly disturbed molecular gas morphology and kinematics. The morphological and kinematical peculiarities in their CO data have many properties in common with those of HI gas in the sample, indicating that strong ICM pressure in fact can have impacts on dense gas deep inside of a galaxy. This implies that it is the molecular gas conditions rather than the molecular gas stripping which is more responsible for quenching of star formation in cluster galaxies. In this study, using multi transitions of 12CO and 13CO, we investigate the density and temperature distributions of CO gas of a Virgo spiral galaxy, NGC 4402 to probe the physical and chemical properties of molecular gas and their relations to star formation activities.

  • PDF

On the interpretation of color bimodality of extra-galactic globular clusters

  • Kim, Hak-Sub;Sohn, SangmoTony;Chung, Chul;Lee, Sang-Yoon;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.27.1-27.1
    • /
    • 2010
  • Globular cluster (GC) systems in most galaxies, particularly in ellipticals, show bimodal color distributions. Because broadband colors trace metallicity at old ages, this phenomenon has been commonly interpreted as bimodal metallicity distributions, implying the presence of two sub-populations in the globular cluster system within a galaxy. However, a new explanation has recently been proposed, in which the non-linear nature of color-metallicity relations induced by horizontal-branch stars can produce bimodal color distributions even from unimodal metallicity distributions. In this study, we put these two explanations to the test on the origin of color bimodality, using multi-band (U,B,V and I) photometry of globular clusters in NGC 1399, the central giant elliptical galaxy in Fornax galaxy cluster. We find significant changes in the morphology of color distributions when using different colors. The observation is also well reproduced by the Monte Carlo realization of GC color when a unimodal metallicity distribution and the theoretical non-linear color-metallicity relations are assumed. We discuss the implications regarding theories on galaxy formation and evolution.

  • PDF

Quantifying galactic morphological transformations in the cluster environment

  • Cervantes-Sodi, Bernardo;Park, Chang-Bom;Hernandez, X.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • We study the effects of the cluster environment on galactic morphology by defining a dimensionless angular momentum parameter ld, to obtain a quantitative and objective measure of galaxy type. The use of this physical parameter allows us to take the study of morphological transformations in clusters beyond the measurements of merely qualitative parameters, e.g. S/E ratios, to a more physical footing. To this end, we employ an extensive SDSS sample, with galaxies associated with Abell galaxy clusters. The sample contains 93 relaxed Abell clusters and over 34,000 individual galaxies. We find that the median ld value tends to decrease as we approach the cluster center, with different dependences according to the mass of the galaxies and the hosting cluster; low and intermediate mass galaxies showing a strong dependence, while massive galaxies seems to show, at all radii, low ld values. By analysing trends in ld as functions of the nearest galactic neighbour environment, clustercentric radius and velocity dispersion of clusters, we can identify clearly the leading physical processes at work. We find that in massive clusters (s > 700 km/s), the interaction with the cluster central region dominates, whilst in smaller clusters galaxy-galaxy interactions are chiefly responsible for driving galactic morphological transformations.

  • PDF

KOREA INSTITUTE FOR ADVANCED STUDY VALUE-ADDED GALAXY CATALOG

  • Choi, Yun-Young;Han, Du-Hwan;Kim, Sung-Soo S.
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.6
    • /
    • pp.191-200
    • /
    • 2010
  • We present the Korea Institute for Advanced Study Value-Added Galaxy Catalog (KIAS VAGC), a catalog of galaxies based on the Large Scale Structure (LSS) sample of New York University Value-Added Galaxy Catalog (NYU VAGC) Data Release 7. Our catalog supplements redshifts of 10,497 galaxies with 10 < $r_P\;{\leq}\;17.6$ (1455 with 10 < $r_P\;{\leq}\;14.5$) to the NYU VAGC LSS sample. Redshifts from various existing catalogs such as the Updated Zwicky Catalog, the IRAS Point Source Catalog Redshift Survey, the Third Reference Catalogue of Bright Galaxies, and the Two Degree Field Galaxy Redshift Survey have been put into the NYU VAGC photometric catalog. Our supplementation significantly improves spectroscopic completeness: the area covered by the spectroscopic sample with completeness higher than 95% increases from 2.119 to 1.737 sr. Our catalog also provides morphological types of all galaxies that are determined by the automated morphology classification scheme of Park & Choi (2005), and related parameters, together with fundamental photometry parameters supplied by the NYU VAGC. Our catalog contains matches to objects in the Max Planck for Astronomy (MPA) & Johns Hopkins University (JHU) spectrum measurements (Data Release 7). This new catalog, the KIAS VAGC, is complementary to the NYU VAGC and MPA-JHU catalog.

A Multi-Wavelength Study of Galaxy Transition in Different Environments (다파장 관측 자료를 이용한 다양한 환경에서의 은하 진화 연구)

  • Lee, Gwang-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.34.2-35
    • /
    • 2018
  • Galaxy transition from star-forming to quiescent, accompanied with morphology transformation, is one of the key unresolved issues in extragalactic astronomy. Although several environmental mechanisms have been proposed, a deeper understanding of the impact of environment on galaxy transition still requires much exploration. My Ph.D. thesis focuses on which environmental mechanisms are primarily responsible for galaxy transition in different environments and looks at what happens during the transition phase using multi-wavelength photometric/spectroscopic data, from UV to mid-infrared (MIR), derived from several large surveys (GALEX, SDSS, and WISE) and our GMOS-North IFU observations. Our multi-wavelength approach provides new insights into the *late* stages of galaxy transition with a definition of the MIR green valley different from the optical green valley. I will present highlights from three areas in my thesis. First, through an in-depth study of environmental dependence of various properties of galaxies in a nearby supercluster A2199 (Lee et al. 2015), we found that the star formation of galaxies is quenched before the galaxies enter the MIR green valley, which is driven mainly by strangulation. Then, the morphological transformation from late- to early-type galaxies occurs in the MIR green valley. The main environmental mechanisms for the morphological transformation are galaxy-galaxy mergers and interactions that are likely to happen in high-density regions such as galaxy groups/clusters. After the transformation, early-type MIR green valley galaxies keep the memory of their last star formation for several Gyr until they move on to the next stage for completely quiescent galaxies. Second, compact groups (CGs) of galaxies are the most favorable environments for galaxy interactions. We studied MIR properties of galaxies in CGs and their environmental dependence (Lee et al. 2017), using a sample of 670 CGs identified using a friends-of-friends algorithms. We found that MIR [3.4]-[12] colors of CG galaxies are, on average, bluer than those of cluster galaxies. As CGs are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends can also be seen for neighboring galaxies around CGs. However, CG members always have larger early-type fractions and bluer MIR colors than their neighboring galaxies. These results suggest that galaxy evolution is faster in CGs than in other environments and that CGs are likely to be the best place for pre-processing. Third, post-starburst galaxies (PSBs) are an ideal laboratory to investigate the details of the transition phase. Their spectra reveal a phase of vigorous star formation activity, which is abruptly ended within the last 1 Gyr. Numerical simulations predict that the starburst, and thus the current A-type stellar population, should be localized within the galaxy's center (< kpc). Yet our GMOS IFU observations show otherwise; all five PSBs in our sample have Hdelta absorption line profiles that extend well beyond the central kpc. Most interestingly, we found a negative correlation between the Hdelta gradient slopes and the fractions of the stellar mass produced during the starburst, suggesting that stronger starbursts are more centrally-concentrated. I will discuss the results in relation with the origin of PSBs.

  • PDF

Observational Evidence of Merging and Accretion in the Milky Way Galaxy from the Spatial Distribution of Stars in Globular Clusters

  • Chun, Sang-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.76-76
    • /
    • 2013
  • The current hierarchical model of galaxy formation predicts that galaxy halos contain merger relics in the form of long stellar streams. In order to find stellar substructures in galaxy, we focused our investigation on the stellar spatial density around globular clusters and on the quantitative properties of the evolved sequences in the color-magnitude diagrams (CMDs). First, we investigated the spatial configuration of stars around five metal-poor globular clusters in halo region (M15, M30, M53, NGC 5053, and NGC 5466) and one metal-poor globular cluster in bulge region (NGC 6626). Our findings indicate that all of these globular clusters show strong evidence of extratidal features in the form of extended tidal tails around the clusters. The orientations of the extratidal features show the signatures of tidal tails tracing the clusters' orbits and the effects of dynamical interactions with the galaxy. These features were also confirmed by the radial surface density profiles and azimuthal number density profiles. Our results suggest that these six globular clusters are potentially associated with the satellite galaxies merged into the Milky Way. Second, we derived the morphological parameters of the red giant branch (RGB) from the near-infrared CMDs of 12 metal-poor globular clusters in the Galactic bulge. The photometric RGB shape indices such as colors at fixed magnitudes, magnitudes at fixed colors, and the RGB slope were measured for each cluster. The magnitudes of the RGB bump and tip were also estimated. The derived RGB parameters were used to examine the overall behavior of the RGB morphology as a function of cluster metallicity. The behavior of the RGB shape parameters was also compared with the previous observational calibration relation and theoretical predictions of the Yonsei-Yale isochrones. Our results of studies for stellar spatial distribution around globular clusters and the morphological properties of RGB stars in globular clusters could add further observational evidence of merging scenario of galaxy formation.

  • PDF

Photometric and Spectroscopic Morphology Classifications Using SDSS DR7 : Virgo Cluster

  • Kim, Suk;Rey, Soo-Chang;Sung, Eon-Chang;Lisker, Thorsten;Jerjen, Helmut;Lee, Young-Dae;Chung, Ji-Won;Pak, Min-A;Yi, Won-Hyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.69.1-69.1
    • /
    • 2011
  • While the Virgo Cluster Catalog (VCC) is well established catalog from deep photographic plate survey, with available survey data recently released (e.g., SDSS), it can be further updated concerning the membership and morphology of galaxies. While membership and morphology of galaxies included in the VCC are based on the single band imaging data, thanks to the multi-color imaging and spectroscopic observations of SDSS, we are able to revise the membership and morphology of sample galaxies in the fields of the Virgo cluster. We present a new catalog of galaxies in the Virgo cluster using SDSS DR7 data, the extended Virgo cluster catalog. Using SDSS imaging and spectroscopic data, we introduce two kinds of galaxy classifications which are complementary each other. In addition to traditional morphological classification by visual inspection of the images ("Primary Classification"), we also attempt to classify galaxies with the spectroscopic features ("Secondary Classification"). The primary classification is basically based on the scheme of galaxy morphological classification of VCC. The secondary classification relies on the SED shape and presence of emission/absorption lines returned from SDSS. Our morphological classifications allow to study the evolution and associated star formation histories of galaxies in the Virgo cluster.

  • PDF