• Title/Summary/Keyword: galaxy: Large Magellanic Cloud

Search Result 16, Processing Time 0.024 seconds

DEEP INFRARED SURVEYS OF STAR FORMING REGIONS IN THE MWG AND LMC

  • NAKAJIMA YASUSHI
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.173-174
    • /
    • 2005
  • On behalf of the IRSF/SIRIUS group, I introduce some recent results from our deep near-infrared surveys (J, Hand Ks bands, limiting magnitude of Ks=17) toward star forming regions in the Milky Way Galaxy (MWG) and Large Magellanic Cloud (LMC) with the near-infrared camera SIRIUS. We discovered a rich population of low-mass young stellar objects associated with the W3 and NGC 7538 regions in the MWG based on the near-infrared colors arid magnitudes. The high sensitivity of our survey enables us to detect intermediate-mass pre-main sequence stars, i.e. HAEBE stars, even in the LMC. We detected many HAEBE candidate stars in the N159/N160 complex star forming region in the LMC with the IRSF 1.4-m telescope. Spatial distributions of the young stellar objects indicate the sequential cluster formation in each star forming region in the complex and large scale (a few ${\times}$ 100 pc) sequential cluster formation over the entire complex.

Proper motion of Galactic globular cluster NGC 104

  • Kim, Eun-Hyeuk;Kim, Min-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.84.1-84.1
    • /
    • 2010
  • Globular clusters (GCs) are known to be one of the oldest objects in the Milky Way. Therefore the dynamical informations of GCs are very important to understand the formation and evolution of our Galaxy. Motion of GCs in the halo of Galaxy can be traced by radial velocities of individual stars and proper motions of GCs. Measuring the radial velocities of stars in GCs has been challenging for decades because the brightness of stars (even for the brightest stars) in GCs are too faint (V>14) to measure the radial velocities. The available large telescopes (D>4m) enable us to observe the spectra of stars in the red giant branch of GCs, and it is now more plausible to measure the radial velocities of stars in GCs. On the contrary it is still very difficult to measure the sky-projected two-dimensional motion of GCs in Galaxy even with the large telescopes because the distance to GCs is quite large (~10kpc) compared to the spatial resolution of present-day large ground-based telescopes. Instruments on-board Hubble Space Telescope are ideal to study the proper motion of GCs thanks to their extremely high spatial resolution (~0.05arcsec). We report a study of proper motion of NGC 104, one of the most metal-rich Milky Way GCs, based-on archival images of NGC 104 observed using HST/ACS. Using the stars in Small Magellanic Cloud as reference coordinate, we are able to measure the proper motions of individual stars in NGC 104 with a high precision. We discuss the internal dynamics of stars in NGC 104 by comparing proper motion results based-on shorter (<1yr) and longer (~7yrs) time durations.

  • PDF

INFRARED [FE II] EMISSION LINES FROM RADIATIVE ATOMIC SHOCKS

  • KOO, BON-CHUL;RAYMOND, JOHN C.;KIM, HYUN-JEONG
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.3
    • /
    • pp.109-122
    • /
    • 2016
  • [Fe II] emission lines are prominent in the infrared (IR) and important as diagnostic tools for radiative atomic shocks. We investigate the emission characteristics of [Fe II] lines using a shock code developed by Raymond (1979) with updated atomic parameters. We first review general characteristics of the IR [Fe II] emission lines from shocked gas, and derive their fluxes as a function of shock speed and ambient density. We have compiled available IR [Fe II] line observations of interstellar shocks and compare them to the ratios predicted from our model. The sample includes both young and old supernova remnants in the Galaxy and the Large Magellanic Cloud and several Herbig-Haro objects. We find that the observed ratios of the IR [Fe II] lines generally fall on our grid of shock models, but the ratios of some mid-IR lines, e.g., [Fe II] 35.35 µm/[Fe II] 25.99 µm, [Fe II] 5.340 µm/[Fe II] 25.99 µm, and [Fe II] 5.340 µm/[Fe II] 17.94 µm, are significantly offset from our model grid. We discuss possible explanations and conclude that while uncertainties in the shock modeling and the observations certainly exist, the uncertainty in atomic rates appears to be the major source of discrepancy.

QSO Selections Using Time Variability and Machine Learning

  • Kim, Dae-Won;Protopapas, Pavlos;Byun, Yong-Ik;Alcock, Charles;Khardon, Roni
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.64-64
    • /
    • 2011
  • We present a new quasi-stellar object (QSO) selection algorithm using a Support Vector Machine, a supervised classification method, on a set of extracted time series features including period, amplitude, color, and autocorrelation value. We train a model that separates QSOs from variable stars, non-variable stars, and microlensing events using 58 known QSOs, 1629 variable stars, and 4288 non-variables in the MAssive Compact Halo Object (MACHO) database as a training set. To estimate the efficiency and the accuracy of the model, we perform a cross-validation test using the training set. The test shows that the model correctly identifies ~80% of known QSOs with a 25% false-positive rate. The majority of the false positives are Be stars. We applied the trained model to the MACHO Large Magellanic Cloud (LMC) data set, which consists of 40 million lightcurves, and found 1620 QSO candidates. During the selection, none of the 33,242 known MACHO variables were misclassified as QSO candidates. In order to estimate the true false-positive rate, we crossmatched the candidates with astronomical catalogs including the Spitzer Surveying the Agents of a Galaxy's Evolution (SAGE) LMC catalog and a few X-ray catalogs. The results further suggest that the majority of the candidates, more than 70%, are QSOs.

  • PDF

Physical Properties of Molecular Clouds in NGC 6822 Hubble V

  • Lee, Hye-In;Pak, Soojong;Oh, Heeyoung;Le, Huynh Anh N.;Lee, Sungho;Lim, Beomdu;Tatematsu, Ken'ichi;Park, Sangwook;Mace, Gregory;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.66.4-66.4
    • /
    • 2019
  • NGC 6822 is a dwarf irregular galaxy whose metal abundance is lower than of the Large Magellanic Cloud. Hubble V is the brightest HII complex where molecular clouds surround the core cluster of OB stars. Because of its proximity (d = 500 kpc), we can resolve the star-forming regions on parsec scales (1 arcsec = 2.4 pc). Using the high-resolution (R = 45,000) near-infrared spectrograph, IGRINS, we observed molecular hydrogen emission lines from photo-dissociation regions (PDRs) and $Br{\gamma}$ emission line from ionized regions. In this presentation, we compare our data PDR models in order to derive the density distribution of the molecular clouds on parsec scales and to estimate the total mass of the clouds.

  • PDF

Optical spectroscopy of LMC SNRs to reveal the origin of [P II] knots

  • Aliste C., Rommy L.S.E.;Koo, Bon-Chul;Seok, Ji Yeon;Lee, Yong-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.65.2-66
    • /
    • 2021
  • Observational studies of supernova (SN) feedback are limited. In our galaxy, most supernova remnants (SNRs) are located in the Galactic plane, so there is contamination from foreground/background sources. SNRs located in other galaxies are too far, so we cannot study them in detail. The Large Magellanic Cloud (LMC) is a unique place to study the SN feedback due to their proximity, which makes possible to study the structure of individual SNRs in some detail together with their environment. Recently, we carried out a systematic study of 13 LMC SNRs using [P II] (1.189 ㎛) and [Fe II] (1.257 ㎛) narrowband imaging with SIRIUS/IRSF, four SNRs (SN 1987A, N158A, N157B and N206), show [P II]/[Fe II] ratio much higher than the cosmic abundance. While the high ratio of SN 1987A could be due to enhanced abundance in SN ejecta, we do not have a clear explanation for the other cases. We investigate the [P II] knots found in SNRs N206, N157B and N158A, using optical spectra obtained last November with GMOS-S mounted on Gemini-South telescope. We detected several emission lines (e.g., H I, [O I], He I, [O III], [N II] and [S II]) that are present in all three SNRs, among other lines that are only found in some of them (e.g., [Ne III], [Fe III] and [Fe II]). Various line ratios are measured from the three SNRs, which indicate that the ratios of N157B tend to differ from those of other two SNRs. We will use the abundances of He and N (from the detection of [N II] and He I emission lines), together with velocity measurements to tell whether the origin of the [P II] knots are SN ejecta or CSM/ISM. For this purpose we have built a family of radiative shock with self-consistent pre-ionization using MAPPINGS 5.1.18, with shock velocities in the range of 100 to 475 km/s. We will compare the observed and modeled line fluxes for different depletion factors.

  • PDF