• Title/Summary/Keyword: galaxies:interactions

Search Result 76, Processing Time 0.027 seconds

A Multi-Wavelength Study of Galaxy Transition in Different Environments (다파장 관측 자료를 이용한 다양한 환경에서의 은하 진화 연구)

  • Lee, Gwang-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.34.2-35
    • /
    • 2018
  • Galaxy transition from star-forming to quiescent, accompanied with morphology transformation, is one of the key unresolved issues in extragalactic astronomy. Although several environmental mechanisms have been proposed, a deeper understanding of the impact of environment on galaxy transition still requires much exploration. My Ph.D. thesis focuses on which environmental mechanisms are primarily responsible for galaxy transition in different environments and looks at what happens during the transition phase using multi-wavelength photometric/spectroscopic data, from UV to mid-infrared (MIR), derived from several large surveys (GALEX, SDSS, and WISE) and our GMOS-North IFU observations. Our multi-wavelength approach provides new insights into the *late* stages of galaxy transition with a definition of the MIR green valley different from the optical green valley. I will present highlights from three areas in my thesis. First, through an in-depth study of environmental dependence of various properties of galaxies in a nearby supercluster A2199 (Lee et al. 2015), we found that the star formation of galaxies is quenched before the galaxies enter the MIR green valley, which is driven mainly by strangulation. Then, the morphological transformation from late- to early-type galaxies occurs in the MIR green valley. The main environmental mechanisms for the morphological transformation are galaxy-galaxy mergers and interactions that are likely to happen in high-density regions such as galaxy groups/clusters. After the transformation, early-type MIR green valley galaxies keep the memory of their last star formation for several Gyr until they move on to the next stage for completely quiescent galaxies. Second, compact groups (CGs) of galaxies are the most favorable environments for galaxy interactions. We studied MIR properties of galaxies in CGs and their environmental dependence (Lee et al. 2017), using a sample of 670 CGs identified using a friends-of-friends algorithms. We found that MIR [3.4]-[12] colors of CG galaxies are, on average, bluer than those of cluster galaxies. As CGs are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends can also be seen for neighboring galaxies around CGs. However, CG members always have larger early-type fractions and bluer MIR colors than their neighboring galaxies. These results suggest that galaxy evolution is faster in CGs than in other environments and that CGs are likely to be the best place for pre-processing. Third, post-starburst galaxies (PSBs) are an ideal laboratory to investigate the details of the transition phase. Their spectra reveal a phase of vigorous star formation activity, which is abruptly ended within the last 1 Gyr. Numerical simulations predict that the starburst, and thus the current A-type stellar population, should be localized within the galaxy's center (< kpc). Yet our GMOS IFU observations show otherwise; all five PSBs in our sample have Hdelta absorption line profiles that extend well beyond the central kpc. Most interestingly, we found a negative correlation between the Hdelta gradient slopes and the fractions of the stellar mass produced during the starburst, suggesting that stronger starbursts are more centrally-concentrated. I will discuss the results in relation with the origin of PSBs.

  • PDF

Interactions between early- and late-type galaxies and morphology transformation

  • Hwang, Jeong-Sun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2013
  • We perform a set of N-body/SPH simulations of galaxy interactions between early- and late-type galaxies with the mass ratio of 2 to 1. We show that mass transfer during a fly by interaction (the closest approach distance ~50kpc) can cause the morphology transformation of an early-type galaxy to a late type. In our simulations, we vary the orbital parameters of the interactions and the cold gas fraction of the late-type galaxy to compare how the morphology transformation is affected by the amount of mass transfer and orbital angular momentum of cold gas accreted to the early type. We also include hot halo gas in the galaxy models and show the location of the tidal bridge can be influenced by the shock generated during the collision.

  • PDF

OBSERVATIONS OF STAR FORMATION INDUCED BY GALAXY-GALAXY AND GALAXY-INTERGALACTIC MEDIUM INTERACTIONS WITH AKARI

  • Suzuki, T.;Kaneda, H.;Onaka, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.243-248
    • /
    • 2012
  • Nearby spiral galaxies M101 and M81 are considered to have undergone a galaxy-galaxy interaction. M101 has experienced HI gas infall due to the interaction. With AKARI far-infrared (IR) photometric observations, we found regions with enhanced star forming activity, which are spatially close to regions affected by the interaction. In addition, the relation between the star formation rate (SFR) and the gas content for such regions shows a significant difference from typical spiral arm regions. We discuss possible explanations for star formation processes on a kiloparsec scale and the association with interaction-triggered star formation. We also observed the compact group of galaxies Stephan's Quintet (SQ) with the AKARI Far-infrared Surveyor (FIS). The SQ shows diffuse intergalactic medium (IGM) due to multiple collisions between the member galaxies and the IGM. The intruder galaxy NGC 7318b is currently colliding with the IGM and causes a large-scale shock. The 160 micron image clearly shows the structure along the shock ridge as seen in warm molecular hydrogen line emission and X-ray emission. The far-IR emission from the shocked region comes from the luminous [CII]$158{\mu}m$ line and cold dust (~ 20 K) that coexist with molecular hydrogen gas. Survival of dust grains is indispensable to form molecular hydrogen gas within the collision age (~ 5 Myr). At the stage of the dusty IGM environment, [CII] and $H_2$ lines rather than X-ray emission are powerful cooling channels to release the collision energy.

The main sequence of star forming galaxies at intermediate redshift

  • Salmi, Fadia
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.71.2-71.2
    • /
    • 2014
  • processes at the origin of the star formation in the galaxies over the last 10 billions years. While it was proposed in the past that merging of galaxies has a dominant role to explain the triggering of the star formation in the distant galaxies having high star formation rates. In the opposite, more recent studies revealed scaling laws linking the star formation rate in the galaxies to their stellar mass or their gas mass. The small dispersion of these laws seems to be in contradiction with the idea of powerful stochastic events due to interactions, but rather in agreement with the new vision of galaxy history where the latter are continuously fed by intergalactic gas. I was especially interested in one of this scaling law, the relation between the star formation (SFR) and the stellar mass (M*) of galaxies, commonly called the main sequence of star forming galaxies. I have studied this main sequence, SFR-M*, in function of the morphology and other physical parameters as the radius, the colour, the clumpiness. The goal was to understand the origin of the sequence's dispersion related to the physical processes underlying this sequence in order to identify the main mode of star formation controlling this sequence. This work needed a multi-wavelength approach as well as the use of galaxies profile simulation to distinguish between the different galaxy morphological types implied in the main sequence.

  • PDF

Properties of Galaxies in Cosmic Filaments around the Virgo Cluster

  • Lee, Youngdae;Kim, Suk;Rey, Soo-Chang;Chung, Jiwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2020
  • We present the properties of galaxies in filaments around the Virgo cluster with respect to their vertical distance from the filament spine. Using the NASA-Sloan Atlas and group catalogs, we select galaxies that do not belong to groups in filaments. The filament member galaxies are then defined as those located within 3.5 scale length from the filament spine. The filaments are mainly (~86%) composed of low-mass dwarf galaxies of logh2M∗/M⊙ < 9 dominantly located on the blue cloud in color-magnitude diagrams. We observe that the g - r color and stellar mass of galaxies correlate with their vertical distance from the filament spine in which the color becomes red and stellar mass decreases with increasing vertical filament distance. The galaxies were divided into two subsamples in different stellar mass ranges, with lower-mass (logh2M∗/M⊙ ≤ 8) galaxies showing a clear negative g-r color gradient, whereas higher-mass (logh2M∗/M⊙ > 8) galaxies have a flat distribution against the vertical filament distance. We observe a negative EW(Hα) gradient for higher-mass galaxies, whereas lower-mass galaxies show no distinct variation in EW(Hα) against the vertical filament distance. In contrast, the NUV - r color distribution of higher-mass galaxies shows no strong dependence on the vertical filament distance, whereas the lower-mass galaxies show a distinct negative NUV - r color gradient. We do not witness clear gradients of HI fraction in either the higher- or lower-mass subsamples. We propose that the negative color and stellar mass gradients of galaxies can be explained by mass assembly from past galaxy mergers at different vertical filament distances. In addition, galaxy interactions might be responsible for the contrasting features of EW(Hα) and NUV - r color distributions between the higher- and lower-mass subsamples. The HI fraction distributions of the two subsamples suggest that ram-pressure stripping and gas accretion could be ignorable processes in the Virgo filaments.

  • PDF

KYDISC program : Galaxy Morphology in the Cluster Environment

  • Oh, Sree;Sheen, Yun-Kyeong;Kim, Minjin;Lee, Joon Hyeop;Kyeong, Jaemann;Ree, Chang H.;Park, Byeong-Gon;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.60.3-61
    • /
    • 2016
  • Galaxy morphology involves complex effects from both secular and non-secular evolution of galaxies. Although it is a final product of galaxy evolution, it gives a clue to the processes that the a galaxy has gone through. Galaxy clusters are the sites where the most massive galaxies are found, and thus the most dramatic merger histories are embedded. Our deep imaging program (${\mu}{\sim}28\;mag\;arcsec^{-2}$), KASI-Yonsei Deep Imaging Survey for Clusters (KYDISC), targets 14 Abell clusters at z = 0.016 - 0.14 using IMACS/Magellan telescope and MegaCam/CFHT to investigate cluster galaxies especially on low surface brightness features related to galaxy interactions. We visually classify galaxy morphology based on criteria related to secular or merger related evolution and find that the morphological mixture of galaxies varies considerably from cluster to cluster. Moreover it depends on the characteristics (e.g. cluster mass) of cluster itself which implies that environmental effects in cluster scale is also an important factor to the evolution of galaxies together with intrinsic (secular) and galaxy merger. Our deep imaging survey for morphological inspection of cluster galaxies with low surface brightness is expected to be a useful basis to understand the nature of cluster galaxies and their internal/external evolutionary path.

  • PDF

Testing for Dust Stripping of Virgo Cluster Galaxies According to HI Gas Stripping Stage

  • Lee, Hye-Ran;Zabludoff, Ann;Lee, Joon Hyeop;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.75.2-75.2
    • /
    • 2017
  • We Investigate dust stripping of Virgo cluster galaxies that are known to suffer HI gas stripping. The gas stripping phenomena of these galaxies may result from either ram pressure induced by the hot intracluster medium or gravitational tidal interactions between galaxies. While much efforts have been made to directly detect gas removed from cluster galaxies, the spatial distributions of dust, which should also be affected, are hardly known. Several previous studies have tried to directly detect the morphology of gas or dust using radio or infrared observations, but such approaches are hard to widely apply because of the limit of observational resolution and sensitivity. In this study, we try a different approach using optical data: measuring the background galaxy reddening by the dust stripped from the Virgo cluster members. Based on optical color excess maps of the background galaxies, we compare the ambient dust distribution with the HI morphology of the Virgo galaxies. We discuss how efficiently dust stripping can be detected with this method and how the stripped dust is associated with the removed gas according to HI gas stripping stage over the sample.

  • PDF

Merger Induced Kinematic Anomalies in Abell 119

  • Oh, Sree;Jeong, Hyunjin;Sheen, Yun-Kyeong;Croom, Scott;Yi, Sukyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2016
  • Galaxy clusters are the sites where the most massive galaxies are found, and so the most dramatic merger histories are embedded. Our deep (mu ~ 28 mag/arcsec^2) images of Abell 119 at z = 0.044 using the Blanco 4-m telescope at CTIO revealed post-merger signatures in ~35% of galaxies brighter than Mr < -19.5, suggesting that so many galaxies even in clusters have gone through galaxy mergers at recent epoch. We went further to understand the impact of mergers in cluster galaxies using stellar kinematics from the SAMI Integral Field Unit on the galaxies of Abell 119 in three aspects of kinematics : orientations, levels of rotation, and kinematic shapes. We found that 30% of the merger-featured galaxies show misalignment in the angle between the photometric major and the rotation axes, and most of them show complex kinematics. For comparison, only 5% of non-merger-featured galaxies show the misalignment. Moreover, our analysis using the Tully-Fisher relation shows that galaxy interactions can both enhance or reduce galaxy spin depending on the merger geometry. We present our preliminary result and discussion on the role of galaxy mergers in cluster environment from the perspective of kinematics.

  • PDF

Galaxy Rotation Coherent with the Average Motion of Neighbors

  • Lee, Joon Hyeop;Pak, Mina;Lee, Hye-Ran;Song, Hyunmi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.34.3-34.3
    • /
    • 2019
  • We report our discovery of observational evidence for the coherence between galaxy rotation and the average motion of neighbors. Using the Calar Alto Legacy Integral Field Area (CALIFA) survey data analyzed with the Python CALIFA STARLIGHT Synthesis Organizer (PyCASSO) platform, and the NASA-Sloan Atlas (NSA) catalog, we estimate the angular momentum vectors of 445 CALIFA galaxies and build composite maps of their neighbor galaxies on the parameter space of velocity versus distance. The composite radial profiles of the luminosity-weighted mean velocity of neighbors show striking evidence for dynamical coherence between the rotational direction of the CALIFA galaxies and the average moving direction of their neighbor galaxies. The signal of such dynamical coherence is significant for the neighbors within 800 kpc distance from the CALIFA galaxies with a confidence level of $3.5{\sigma}$, when the angular momentum is measured at the outskirt ($Re<R{\leq}2Re$) of each CALIFA galaxy. We also find that faint or kinematically misaligned galaxies show stronger coherence with neighbor motions than bright or kinematically well-aligned galaxies do. Our results show that the rotation of a galaxy, particularly at its outskirt, may be significantly influenced by recent interactions with its neighbors.

  • PDF

Evolution of Star Formation Rate - Density Relation over Cosmic Time in a Simulated Universe: the Observed Reversal Reproduced

  • Hwang, Ho Seong;Shin, Jihye;Song, Hyunmi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.65.3-66
    • /
    • 2020
  • We use the IllustrisTNG cosmological hydrodynamical simulation to study the evolution of star formation rate (SFR)-density relation over cosmic time. We construct several samples of galaxies at different redshifts from z=2.0 to z=0.0, which have the same comoving number density. The SFR of galaxies decreases with local density at z=0.0, but its dependence on local density becomes weaker with redshift. At z≳1.0, the SFR of galaxies increases with local density (reversal of the SFR-density relation), and its dependence becomes stronger with redshift. This change of SFR-density relation with redshift still remains even when fixing the stellar masses of galaxies. The dependence of SFR on the distance to a galaxy cluster also shows a change with redshift in a way similar to the case based on local density, but the reversal happens at a higher redshift, z~1.5, in clusters. On the other hand, the molecular gas fraction always decreases with local density regardless of redshift at z=0.0-2.0 even though the dependence becomes weaker when we fix the stellar mass. Our study demonstrates that the observed reversal of the SFR-density relation at z≳1.0 can be successfully reproduced in cosmological simulations. Our results are consistent with the idea that massive, star-forming galaxies are strongly clustered at high redshifts, forming larger structures. These galaxies then consume their gas faster than those in low-density regions through frequent interactions with other galaxies, ending up being quiescent in the local universe.

  • PDF